Each framework has a generate method for text generation implemented in their respective GenerationMixin
class:
Regardless of your framework of choice, you can parameterize the generate method with a GenerationConfig class instance. Please refer to this class for the complete list of generation parameters, which control the behavior of the generation method.
To learn how to inspect a model’s generation configuration, what are the defaults, how to change the parameters ad hoc, and how to create and save a customized generation configuration, refer to the text generation strategies guide. The guide also explains how to use related features, like token streaming.
( **kwargs )
Parameters that control the length of the output
int
, optional, defaults to 20) —
The maximum length the generated tokens can have. Corresponds to the length of the input prompt +
max_new_tokens
. Its effect is overridden by max_new_tokens
, if also set. int
, optional) —
The maximum numbers of tokens to generate, ignoring the number of tokens in the prompt. int
, optional, defaults to 0) —
The minimum length of the sequence to be generated. Corresponds to the length of the input prompt +
min_new_tokens
. Its effect is overridden by min_new_tokens
, if also set. int
, optional) —
The minimum numbers of tokens to generate, ignoring the number of tokens in the prompt. bool
or str
, optional, defaults to False
) —
Controls the stopping condition for beam-based methods, like beam-search. It accepts the following values:
True
, where the generation stops as soon as there are num_beams
complete candidates; False
, where an
heuristic is applied and the generation stops when is it very unlikely to find better candidates;
"never"
, where the beam search procedure only stops when there cannot be better candidates (canonical
beam search algorithm). float
, optional) —
The maximum amount of time you allow the computation to run for in seconds. generation will still finish
the current pass after allocated time has been passed. Parameters that control the generation strategy used
bool
, optional, defaults to False
) —
Whether or not to use sampling ; use greedy decoding otherwise. int
, optional, defaults to 1) —
Number of beams for beam search. 1 means no beam search. int
, optional, defaults to 1) —
Number of groups to divide num_beams
into in order to ensure diversity among different groups of beams.
this paper for more details. float
, optional) —
The values balance the model confidence and the degeneration penalty in contrastive search decoding. bool
, optional, defaults to True
) —
Whether or not the model should use the past last key/values attentions (if applicable to the model) to
speed up decoding. Parameters for manipulation of the model output logits
float
, optional, defaults to 1.0) —
The value used to modulate the next token probabilities. int
, optional, defaults to 50) —
The number of highest probability vocabulary tokens to keep for top-k-filtering. float
, optional, defaults to 1.0) —
If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to
top_p
or higher are kept for generation. float
, optional, defaults to 1.0) —
Local typicality measures how similar the conditional probability of predicting a target token next is to
the expected conditional probability of predicting a random token next, given the partial text already
generated. If set to float < 1, the smallest set of the most locally typical tokens with probabilities that
add up to typical_p
or higher are kept for generation. See this
paper for more details. float
, optional, defaults to 0.0) —
If set to float strictly between 0 and 1, only tokens with a conditional probability greater than
epsilon_cutoff
will be sampled. In the paper, suggested values range from 3e-4 to 9e-4, depending on the
size of the model. See Truncation Sampling as Language Model
Desmoothing for more details. float
, optional, defaults to 0.0) —
Eta sampling is a hybrid of locally typical sampling and epsilon sampling. If set to float strictly between
0 and 1, a token is only considered if it is greater than either eta_cutoff
or sqrt(eta_cutoff) * exp(-entropy(softmax(next_token_logits)))
. The latter term is intuitively the expected next token
probability, scaled by sqrt(eta_cutoff)
. In the paper, suggested values range from 3e-4 to 2e-3,
depending on the size of the model. See Truncation Sampling as Language Model
Desmoothing for more details. float
, optional, defaults to 0.0) —
This value is subtracted from a beam’s score if it generates a token same as any beam from other group at a
particular time. Note that diversity_penalty
is only effective if group beam search
is enabled. float
, optional, defaults to 1.0) —
The parameter for repetition penalty. 1.0 means no penalty. See this
paper for more details. float
, optional, defaults to 1.0) —
The paramater for encoder_repetition_penalty. An exponential penalty on sequences that are not in the
original input. 1.0 means no penalty. float
, optional, defaults to 1.0) —
Exponential penalty to the length that is used with beam-based generation. It is applied as an exponent to
the sequence length, which in turn is used to divide the score of the sequence. Since the score is the log
likelihood of the sequence (i.e. negative), length_penalty
> 0.0 promotes longer sequences, while
length_penalty
< 0.0 encourages shorter sequences. int
, optional, defaults to 0) —
If set to int > 0, all ngrams of that size can only occur once. List[List[int]]
, optional) —
List of list of token ids that are not allowed to be generated. Check
NoBadWordsLogitsProcessor for further documentation and examples. List[List[int]]
or List[List[List[int]]]
, optional) —
List of token ids that must be generated. If given a List[List[int]]
, this is treated as a simple list of
words that must be included, the opposite to bad_words_ids
. If given List[List[List[int]]]
, this
triggers a disjunctive constraint, where one
can allow different forms of each word. bool
, optional, defaults to False
) —
Whether to renormalize the logits after applying all the logits processors or warpers (including the custom
ones). It’s highly recommended to set this flag to True
as the search algorithms suppose the score logits
are normalized but some logit processors or warpers break the normalization. List[Constraint]
, optional) —
Custom constraints that can be added to the generation to ensure that the output will contain the use of
certain tokens as defined by Constraint
objects, in the most sensible way possible. int
, optional, defaults to model.config.forced_bos_token_id
) —
The id of the token to force as the first generated token after the decoder_start_token_id
. Useful for
multilingual models like mBART where the first generated token needs to be the target
language token. Union[int, List[int]]
, optional, defaults to model.config.forced_eos_token_id
) —
The id of the token to force as the last generated token when max_length
is reached. Optionally, use a
list to set multiple end-of-sequence tokens. bool
, optional, defaults to model.config.remove_invalid_values
) —
Whether to remove possible nan and inf outputs of the model to prevent the generation method to crash.
Note that using remove_invalid_values
can slow down generation. tuple(int, float)
, optional) —
This Tuple adds an exponentially increasing length penalty, after a certain amount of tokens have been
generated. The tuple shall consist of: (start_index, decay_factor)
where start_index
indicates where
penalty starts and decay_factor
represents the factor of exponential decay List[int]
, optional) —
A list of tokens that will be suppressed at generation. The SupressTokens
logit processor will set their
log probs to -inf
so that they are not sampled. List[int]
, optional) —
A list of tokens that will be suppressed at the beginning of the generation. The SupressBeginTokens
logit
processor will set their log probs to -inf
so that they are not sampled. List[List[int]]
, optional) —
A list of pairs of integers which indicates a mapping from generation indices to token indices that will be
forced before sampling. For example, [[1, 123]]
means the second generated token will always be a token
of index 123. Dict[Tuple[int], float]
, optional)) —
Dictionary that maps a sequence of tokens to its bias term. Positive biases increase the odds of the
sequence being selected, while negative biases do the opposite. Check
SequenceBiasLogitsProcessor for further documentation and examples. float
, optional) —
The guidance scale for classifier free guidance (CFG). CFG is enabled by setting guidance_scale > 1
.
Higher guidance scale encourages the model to generate samples that are more closely linked to the input
prompt, usually at the expense of poorer quality. bool
, optional) —
Switch to sequential beam search and sequential topk for contrastive search to reduce peak memory.
Used with beam search and contrastive search. Parameters that define the output variables of `generate`
int
, optional, defaults to 1) —
The number of independently computed returned sequences for each element in the batch. bool
, optional, defaults to False
) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more details. bool
, optional, defaults to False
) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more details. bool
, optional, defaults to False
) —
Whether or not to return the prediction scores. See scores
under returned tensors for more details. bool
, optional, defaults to False
) —
Whether or not to return a ModelOutput instead of a plain tuple. Special tokens that can be used at generation time
int
, optional) —
The id of the padding token. int
, optional) —
The id of the beginning-of-sequence token. Union[int, List[int]]
, optional) —
The id of the end-of-sequence token. Optionally, use a list to set multiple end-of-sequence tokens. Generation parameters exclusive to encoder-decoder models
int
, optional, defaults to 0) —
If set to int > 0, all ngrams of that size that occur in the encoder_input_ids
cannot occur in the
decoder_input_ids
. Union[int, List[int]]
, optional) —
If an encoder-decoder model starts decoding with a different token than bos, the id of that token or a list of length
batch_size
. Indicating a list enables different start ids for each element in the batch
(e.g. multilingual models with different target languages in one batch) Generation parameters exclusive to [assistant generation](https
int
, optional, defaults to 5) —
Defines the number of speculative tokens that shall be generated by the assistant model before being
checked by the target model at each iteration. Higher values for num_assistant_tokens
make the generation
more speculative : If the assistant model is performant larger speed-ups can be reached, if the assistant
model requires lots of corrections, lower speed-ups are reached. str
, optional, defaults to "heuristic"
) —
Defines the schedule at which max assistant tokens shall be changed during inference.
"heuristic"
: When all speculative tokens are correct, increase num_assistant_tokens
by 2 else
reduce by 1. num_assistant_tokens
value is persistent over multiple generation calls with the same assistant model."heuristic_transient"
: Same as "heuristic"
but num_assistant_tokens
is reset to its initial value after each generation call."constant"
: num_assistant_tokens
stays unchanged during generationParameters specific to the caching mechanism
str
, optional, default to None
) —
Cache class that should be used when generating. Wild card
Class that holds a configuration for a generation task. A generate
call supports the following generation methods
for text-decoder, text-to-text, speech-to-text, and vision-to-text models:
num_beams=1
and
do_sample=False
penalty_alpha>0.
and top_k>1
num_beams=1
and
do_sample=True
num_beams>1
and
do_sample=False
num_beams>1
and do_sample=True
num_beams>1
and num_beam_groups>1
constraints!=None
or force_words_ids!=None
assisted_decoding()
, if
assistant_model
is passed to .generate()
You do not need to call any of the above methods directly. Pass custom parameter values to ‘.generate()‘. To learn more about decoding strategies refer to the text generation strategies guide.
A large number of these flags control the logits or the stopping criteria of the generation. Make sure you check the generate-related classes for a full description of the possible manipulations, as well as examples of their usage.
( pretrained_model_name: Union config_file_name: Union = None cache_dir: Union = None force_download: bool = False local_files_only: bool = False token: Union = None revision: str = 'main' **kwargs ) → GenerationConfig
Parameters
str
or os.PathLike
) —
This can be either:
./my_model_directory/
.str
or os.PathLike
, optional, defaults to "generation_config.json"
) —
Name of the generation configuration JSON file to be loaded from pretrained_model_name
. str
or os.PathLike
, optional) —
Path to a directory in which a downloaded pretrained model configuration should be cached if the
standard cache should not be used. bool
, optional, defaults to False
) —
Whether or not to force to (re-)download the configuration files and override the cached versions if
they exist. bool
, optional, defaults to False
) —
Whether or not to delete incompletely received file. Attempts to resume the download if such a file
exists. Dict[str, str]
, optional) —
A dictionary of proxy servers to use by protocol or endpoint, e.g., {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
The proxies are used on each request. str
or bool
, optional) —
The token to use as HTTP bearer authorization for remote files. If True
, or not specified, will use
the token generated when running huggingface-cli login
(stored in ~/.huggingface
). str
, optional, defaults to "main"
) —
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so revision
can be any
identifier allowed by git.
To test a pull request you made on the Hub, you can pass `revision=“refs/pr/
bool
, optional, defaults to False
) —
If False
, then this function returns just the final configuration object.
If True
, then this functions returns a Tuple(config, unused_kwargs)
where unused_kwargs is a
dictionary consisting of the key/value pairs whose keys are not configuration attributes: i.e., the
part of kwargs
which has not been used to update config
and is otherwise ignored.
str
, optional, defaults to ""
) —
In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can
specify the folder name here. Dict[str, Any]
, optional) —
The values in kwargs of any keys which are configuration attributes will be used to override the loaded
values. Behavior concerning key/value pairs whose keys are not configuration attributes is controlled
by the return_unused_kwargs
keyword parameter. Returns
The configuration object instantiated from this pretrained model.
Instantiate a GenerationConfig from a generation configuration file.
Examples:
>>> from transformers import GenerationConfig
>>> # Download configuration from huggingface.co and cache.
>>> generation_config = GenerationConfig.from_pretrained("openai-community/gpt2")
>>> # E.g. config was saved using *save_pretrained('./test/saved_model/')*
>>> generation_config.save_pretrained("./test/saved_model/")
>>> generation_config = GenerationConfig.from_pretrained("./test/saved_model/")
>>> # You can also specify configuration names to your generation configuration file
>>> generation_config.save_pretrained("./test/saved_model/", config_file_name="my_configuration.json")
>>> generation_config = GenerationConfig.from_pretrained("./test/saved_model/", "my_configuration.json")
>>> # If you'd like to try a minor variation to an existing configuration, you can also pass generation
>>> # arguments to `.from_pretrained()`. Be mindful that typos and unused arguments will be ignored
>>> generation_config, unused_kwargs = GenerationConfig.from_pretrained(
... "openai-community/gpt2", top_k=1, foo=False, do_sample=True, return_unused_kwargs=True
... )
>>> generation_config.top_k
1
>>> unused_kwargs
{'foo': False}
( model_config: PretrainedConfig ) → GenerationConfig
Instantiates a GenerationConfig from a PretrainedConfig. This function is useful to convert legacy PretrainedConfig objects, which may contain generation parameters, into a stand-alone GenerationConfig.
( save_directory: Union config_file_name: Union = None push_to_hub: bool = False **kwargs )
Parameters
str
or os.PathLike
) —
Directory where the configuration JSON file will be saved (will be created if it does not exist). str
or os.PathLike
, optional, defaults to "generation_config.json"
) —
Name of the generation configuration JSON file to be saved in save_directory
. bool
, optional, defaults to False
) —
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
repository you want to push to with repo_id
(will default to the name of save_directory
in your
namespace). Dict[str, Any]
, optional) —
Additional key word arguments passed along to the push_to_hub() method. Save a generation configuration object to the directory save_directory
, so that it can be re-loaded using the
from_pretrained() class method.
A class containing all functions for auto-regressive text generation, to be used as a mixin in PreTrainedModel.
The class exposes generate(), which can be used for:
num_beams=1
and
do_sample=False
penalty_alpha>0
and
top_k>1
num_beams=1
and
do_sample=True
num_beams>1
and
do_sample=False
num_beams>1
and do_sample=True
num_beams>1
and num_beam_groups>1
constraints!=None
or force_words_ids!=None
You do not need to call any of the above methods directly. Pass custom parameter values to ‘generate’ instead. To learn more about decoding strategies refer to the text generation strategies guide.
( inputs: Optional = None generation_config: Optional = None logits_processor: Optional = None stopping_criteria: Optional = None prefix_allowed_tokens_fn: Optional = None synced_gpus: Optional = None assistant_model: Optional = None streamer: Optional = None negative_prompt_ids: Optional = None negative_prompt_attention_mask: Optional = None **kwargs ) → ModelOutput or torch.LongTensor
Parameters
torch.Tensor
of varying shape depending on the modality, optional) —
The sequence used as a prompt for the generation or as model inputs to the encoder. If None
the
method initializes it with bos_token_id
and a batch size of 1. For decoder-only models inputs
should of in the format of input_ids
. For encoder-decoder models inputs can represent any of
input_ids
, input_values
, input_features
, or pixel_values
. ~generation.GenerationConfig
, optional) —
The generation configuration to be used as base parametrization for the generation call. **kwargs
passed to generate matching the attributes of generation_config
will override them. If
generation_config
is not provided, the default will be used, which had the following loading
priority: 1) from the generation_config.json
model file, if it exists; 2) from the model
configuration. Please note that unspecified parameters will inherit GenerationConfig’s
default values, whose documentation should be checked to parameterize generation. LogitsProcessorList
, optional) —
Custom logits processors that complement the default logits processors built from arguments and
generation config. If a logit processor is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users. StoppingCriteriaList
, optional) —
Custom stopping criteria that complement the default stopping criteria built from arguments and a
generation config. If a stopping criteria is passed that is already created with the arguments or a
generation config an error is thrown. If your stopping criteria depends on the scores
input, make
sure you pass return_dict_in_generate=True, output_scores=True
to generate
. This feature is
intended for advanced users. Callable[[int, torch.Tensor], List[int]]
, optional) —
If provided, this function constraints the beam search to allowed tokens only at each step. If not
provided no constraint is applied. This function takes 2 arguments: the batch ID batch_id
and
input_ids
. It has to return a list with the allowed tokens for the next generation step conditioned
on the batch ID batch_id
and the previously generated tokens inputs_ids
. This argument is useful
for constrained generation conditioned on the prefix, as described in Autoregressive Entity
Retrieval. bool
, optional) —
Whether to continue running the while loop until max_length. Unless overridden this flag will be set to
True
under DeepSpeed ZeRO Stage 3 multiple GPUs environment to avoid hanging if one GPU finished
generating before other GPUs. Otherwise it’ll be set to False
. PreTrainedModel
, optional) —
An assistant model that can be used to accelerate generation. The assistant model must have the exact
same tokenizer. The acceleration is achieved when forecasting candidate tokens with the assistent model
is much faster than running generation with the model you’re calling generate from. As such, the
assistant model should be much smaller. BaseStreamer
, optional) —
Streamer object that will be used to stream the generated sequences. Generated tokens are passed
through streamer.put(token_ids)
and the streamer is responsible for any further processing. torch.LongTensor
of shape (batch_size, sequence_length)
, optional) —
The negative prompt needed for some processors such as CFG. The batch size must match the input batch
size. This is an experimental feature, subject to breaking API changes in future versions. torch.LongTensor
of shape (batch_size, sequence_length)
, optional) —
Attention_mask for negative_prompt_ids
. Dict[str, Any]
, optional) —
Ad hoc parametrization of generate_config
and/or additional model-specific kwargs that will be
forwarded to the forward
function of the model. If the model is an encoder-decoder model, encoder
specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with decoder_. Returns
ModelOutput or torch.LongTensor
A ModelOutput (if return_dict_in_generate=True
or when config.return_dict_in_generate=True
) or a torch.FloatTensor
.
If the model is not an encoder-decoder model (model.config.is_encoder_decoder=False
), the possible
ModelOutput types are:
If the model is an encoder-decoder model (model.config.is_encoder_decoder=True
), the possible
ModelOutput types are:
Generates sequences of token ids for models with a language modeling head.
Most generation-controlling parameters are set in generation_config
which, if not passed, will be set to the
model’s default generation configuration. You can override any generation_config
by passing the corresponding
parameters to generate(), e.g. .generate(inputs, num_beams=4, do_sample=True)
.
For an overview of generation strategies and code examples, check out the following guide.
( sequences: Tensor scores: Tuple beam_indices: Optional = None normalize_logits: bool = False ) → torch.Tensor
Parameters
torch.LongTensor
) —
The generated sequences. The second dimension (sequence_length) is either equal to max_length
or
shorter if all batches finished early due to the eos_token_id
. tuple(torch.FloatTensor)
) —
Transition scores for each vocabulary token at each generation step. Beam transition scores consisting
of log probabilities of tokens conditioned on log softmax of previously generated tokens Tuple of
torch.FloatTensor
with up to max_new_tokens
elements (one element for each generated token), with
each tensor of shape (batch_size*num_beams, config.vocab_size)
. torch.LongTensor
, optional) —
Beam indices of generated token id at each generation step. torch.LongTensor
of shape
(batch_size*num_return_sequences, sequence_length)
. Only required if a num_beams>1
at
generate-time. bool
, optional, defaults to False
) —
Whether to normalize the logits (which, for legacy reasons, may be unnormalized). Returns
torch.Tensor
A torch.Tensor
of shape (batch_size*num_return_sequences, sequence_length)
containing
the transition scores (logits)
Computes the transition scores of sequences given the generation scores (and beam indices, if beam search was used). This is a convenient method to quicky obtain the scores of the selected tokens at generation time.
Examples:
>>> from transformers import GPT2Tokenizer, AutoModelForCausalLM
>>> import numpy as np
>>> tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
>>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
>>> tokenizer.pad_token_id = tokenizer.eos_token_id
>>> inputs = tokenizer(["Today is"], return_tensors="pt")
>>> # Example 1: Print the scores for each token generated with Greedy Search
>>> outputs = model.generate(**inputs, max_new_tokens=5, return_dict_in_generate=True, output_scores=True)
>>> transition_scores = model.compute_transition_scores(
... outputs.sequences, outputs.scores, normalize_logits=True
... )
>>> # input_length is the length of the input prompt for decoder-only models, like the GPT family, and 1 for
>>> # encoder-decoder models, like BART or T5.
>>> input_length = 1 if model.config.is_encoder_decoder else inputs.input_ids.shape[1]
>>> generated_tokens = outputs.sequences[:, input_length:]
>>> for tok, score in zip(generated_tokens[0], transition_scores[0]):
... # | token | token string | log probability | probability
... print(f"| {tok:5d} | {tokenizer.decode(tok):8s} | {score.numpy():.3f} | {np.exp(score.numpy()):.2%}")
| 262 | the | -1.414 | 24.33%
| 1110 | day | -2.609 | 7.36%
| 618 | when | -2.010 | 13.40%
| 356 | we | -1.859 | 15.58%
| 460 | can | -2.508 | 8.14%
>>> # Example 2: Reconstruct the sequence scores from Beam Search
>>> outputs = model.generate(
... **inputs,
... max_new_tokens=5,
... num_beams=4,
... num_return_sequences=4,
... return_dict_in_generate=True,
... output_scores=True,
... )
>>> transition_scores = model.compute_transition_scores(
... outputs.sequences, outputs.scores, outputs.beam_indices, normalize_logits=False
... )
>>> # If you sum the generated tokens' scores and apply the length penalty, you'll get the sequence scores.
>>> # Tip 1: recomputing the scores is only guaranteed to match with `normalize_logits=False`. Depending on the
>>> # use case, you might want to recompute it with `normalize_logits=True`.
>>> # Tip 2: the output length does NOT include the input length
>>> output_length = np.sum(transition_scores.numpy() < 0, axis=1)
>>> length_penalty = model.generation_config.length_penalty
>>> reconstructed_scores = transition_scores.sum(axis=1) / (output_length**length_penalty)
>>> print(np.allclose(outputs.sequences_scores, reconstructed_scores))
True
( input_ids: LongTensor logits_processor: Optional = None stopping_criteria: Optional = None max_length: Optional = None pad_token_id: Optional = None eos_token_id: Union = None output_attentions: Optional = None output_hidden_states: Optional = None output_scores: Optional = None return_dict_in_generate: Optional = None synced_gpus: bool = False streamer: Optional = None **model_kwargs )
Parameters
torch.LongTensor
of shape (batch_size, sequence_length)
) —
The sequence used as a prompt for the generation. LogitsProcessorList
, optional) —
An instance of LogitsProcessorList. List of instances of class derived from LogitsProcessor
used to modify the prediction scores of the language modeling head applied at each generation step. StoppingCriteriaList
, optional) —
An instance of StoppingCriteriaList. List of instances of class derived from StoppingCriteria
used to tell if the generation loop should stop. int
, optional, defaults to 20) —
DEPRECATED. Use logits_processor
or stopping_criteria
directly to cap the number of generated
tokens. The maximum length of the sequence to be generated. int
, optional) —
The id of the padding token. Union[int, List[int]]
, optional) —
The id of the end-of-sequence token. Optionally, use a list to set multiple end-of-sequence tokens. bool
, optional, defaults to False
) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under
returned tensors for more details. bool
, optional, defaults to False
) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors
for more details. bool
, optional, defaults to False
) —
Whether or not to return the prediction scores. See scores
under returned tensors for more details. bool
, optional, defaults to False
) —
Whether or not to return a ModelOutput instead of a plain tuple. bool
, optional, defaults to False
) —
Whether to continue running the while loop until max_length (needed for ZeRO stage 3) BaseStreamer
, optional) —
Streamer object that will be used to stream the generated sequences. Generated tokens are passed
through streamer.put(token_ids)
and the streamer is responsible for any further processing.
model_kwargs —
Additional model specific keyword arguments will be forwarded to the forward
function of the model.
If model is an encoder-decoder model the kwargs should include encoder_outputs
. Generates sequences of token ids for models with a language modeling head using greedy decoding and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.
In most cases, you do not need to call greedy_search() directly. Use generate() instead. For an overview of generation strategies and code examples, check the following guide.
Examples:
>>> from transformers import (
... AutoTokenizer,
... AutoModelForCausalLM,
... LogitsProcessorList,
... MinLengthLogitsProcessor,
... StoppingCriteriaList,
... MaxLengthCriteria,
... )
>>> tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
>>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
>>> # set pad_token_id to eos_token_id because GPT2 does not have a PAD token
>>> model.generation_config.pad_token_id = model.generation_config.eos_token_id
>>> input_prompt = "It might be possible to"
>>> input_ids = tokenizer(input_prompt, return_tensors="pt").input_ids
>>> # instantiate logits processors
>>> logits_processor = LogitsProcessorList(
... [
... MinLengthLogitsProcessor(10, eos_token_id=model.generation_config.eos_token_id),
... ]
... )
>>> stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=20)])
>>> outputs = model.greedy_search(
... input_ids, logits_processor=logits_processor, stopping_criteria=stopping_criteria
... )
>>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
["It might be possible to get a better understanding of the nature of the problem, but it's not"]
( input_ids: LongTensor logits_processor: Optional = None stopping_criteria: Optional = None logits_warper: Optional = None max_length: Optional = None pad_token_id: Optional = None eos_token_id: Union = None output_attentions: Optional = None output_hidden_states: Optional = None output_scores: Optional = None return_dict_in_generate: Optional = None synced_gpus: bool = False streamer: Optional = None **model_kwargs ) → GenerateDecoderOnlyOutput, GenerateEncoderDecoderOutput or torch.LongTensor
Parameters
torch.LongTensor
of shape (batch_size, sequence_length)
) —
The sequence used as a prompt for the generation. LogitsProcessorList
, optional) —
An instance of LogitsProcessorList. List of instances of class derived from LogitsProcessor
used to modify the prediction scores of the language modeling head applied at each generation step. StoppingCriteriaList
, optional) —
An instance of StoppingCriteriaList. List of instances of class derived from StoppingCriteria
used to tell if the generation loop should stop. LogitsProcessorList
, optional) —
An instance of LogitsProcessorList. List of instances of class derived from LogitsWarper used
to warp the prediction score distribution of the language modeling head applied before multinomial
sampling at each generation step. int
, optional, defaults to 20) —
DEPRECATED. Use logits_processor
or stopping_criteria
directly to cap the number of generated
tokens. The maximum length of the sequence to be generated. int
, optional) —
The id of the padding token. Union[int, List[int]]
, optional) —
The id of the end-of-sequence token. Optionally, use a list to set multiple end-of-sequence tokens. bool
, optional, defaults to False
) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under
returned tensors for more details. bool
, optional, defaults to False
) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors
for more details. bool
, optional, defaults to False
) —
Whether or not to return the prediction scores. See scores
under returned tensors for more details. bool
, optional, defaults to False
) —
Whether or not to return a ModelOutput instead of a plain tuple. bool
, optional, defaults to False
) —
Whether to continue running the while loop until max_length (needed for ZeRO stage 3) BaseStreamer
, optional) —
Streamer object that will be used to stream the generated sequences. Generated tokens are passed
through streamer.put(token_ids)
and the streamer is responsible for any further processing.
model_kwargs —
Additional model specific kwargs will be forwarded to the forward
function of the model. If model is
an encoder-decoder model the kwargs should include encoder_outputs
. Returns
GenerateDecoderOnlyOutput, GenerateEncoderDecoderOutput or torch.LongTensor
A torch.LongTensor
containing the generated tokens (default behaviour) or a
GenerateDecoderOnlyOutput if model.config.is_encoder_decoder=False
and
return_dict_in_generate=True
or a GenerateEncoderDecoderOutput if
model.config.is_encoder_decoder=True
.
Generates sequences of token ids for models with a language modeling head using multinomial sampling and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.
In most cases, you do not need to call sample() directly. Use generate() instead. For an overview of generation strategies and code examples, check the following guide.
Examples:
>>> from transformers import (
... AutoTokenizer,
... AutoModelForCausalLM,
... LogitsProcessorList,
... MinLengthLogitsProcessor,
... TopKLogitsWarper,
... TemperatureLogitsWarper,
... StoppingCriteriaList,
... MaxLengthCriteria,
... )
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
>>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
>>> # set pad_token_id to eos_token_id because GPT2 does not have a EOS token
>>> model.config.pad_token_id = model.config.eos_token_id
>>> model.generation_config.pad_token_id = model.config.eos_token_id
>>> input_prompt = "Today is a beautiful day, and"
>>> input_ids = tokenizer(input_prompt, return_tensors="pt").input_ids
>>> # instantiate logits processors
>>> logits_processor = LogitsProcessorList(
... [
... MinLengthLogitsProcessor(15, eos_token_id=model.generation_config.eos_token_id),
... ]
... )
>>> # instantiate logits processors
>>> logits_warper = LogitsProcessorList(
... [
... TopKLogitsWarper(50),
... TemperatureLogitsWarper(0.7),
... ]
... )
>>> stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=20)])
>>> torch.manual_seed(0)
>>> outputs = model.sample(
... input_ids,
... logits_processor=logits_processor,
... logits_warper=logits_warper,
... stopping_criteria=stopping_criteria,
... )
>>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
['Today is a beautiful day, and we must do everything possible to make it a day of celebration.']
( input_ids: LongTensor beam_scorer: BeamScorer logits_processor: Optional = None stopping_criteria: Optional = None max_length: Optional = None pad_token_id: Optional = None eos_token_id: Union = None output_attentions: Optional = None output_hidden_states: Optional = None output_scores: Optional = None return_dict_in_generate: Optional = None synced_gpus: bool = False sequential: Optional = None **model_kwargs )
Parameters
torch.LongTensor
of shape (batch_size, sequence_length)
) —
The sequence used as a prompt for the generation. BeamScorer
) —
An derived instance of BeamScorer that defines how beam hypotheses are constructed, stored and
sorted during generation. For more information, the documentation of BeamScorer should be read. LogitsProcessorList
, optional) —
An instance of LogitsProcessorList. List of instances of class derived from LogitsProcessor
used to modify the prediction scores of the language modeling head applied at each generation step. StoppingCriteriaList
, optional) —
An instance of StoppingCriteriaList. List of instances of class derived from StoppingCriteria
used to tell if the generation loop should stop. int
, optional, defaults to 20) —
DEPRECATED. Use logits_processor
or stopping_criteria
directly to cap the number of generated
tokens. The maximum length of the sequence to be generated. int
, optional) —
The id of the padding token. Union[int, List[int]]
, optional) —
The id of the end-of-sequence token. Optionally, use a list to set multiple end-of-sequence tokens. bool
, optional, defaults to False
) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under
returned tensors for more details. bool
, optional, defaults to False
) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors
for more details. bool
, optional, defaults to False
) —
Whether or not to return the prediction scores. See scores
under returned tensors for more details. bool
, optional, defaults to False
) —
Whether or not to return a ModelOutput instead of a plain tuple. bool
, optional, defaults to False
) —
Whether to continue running the while loop until max_length (needed for ZeRO stage 3) bool
, defaults to False
) —
By default, beam search has batch_size * num_beams
as effective batch size (see beam_search()
for
more details). This flag will avoid parallelizing the beam search and will instead run beam search
sequentially.
model_kwargs —
Additional model specific kwargs will be forwarded to the forward
function of the model. If model is
an encoder-decoder model the kwargs should include encoder_outputs
. Generates sequences of token ids for models with a language modeling head using beam search decoding and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.
In most cases, you do not need to call beam_search() directly. Use generate() instead. For an overview of generation strategies and code examples, check the following guide.
Examples:
>>> from transformers import (
... AutoTokenizer,
... AutoModelForSeq2SeqLM,
... LogitsProcessorList,
... MinLengthLogitsProcessor,
... BeamSearchScorer,
... )
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base")
>>> model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base")
>>> encoder_input_str = "translate English to German: How old are you?"
>>> encoder_input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids
>>> # lets run beam search using 3 beams
>>> num_beams = 3
>>> # define decoder start token ids
>>> input_ids = torch.ones((num_beams, 1), device=model.device, dtype=torch.long)
>>> input_ids = input_ids * model.config.decoder_start_token_id
>>> # add encoder_outputs to model keyword arguments
>>> model_kwargs = {
... "encoder_outputs": model.get_encoder()(
... encoder_input_ids.repeat_interleave(num_beams, dim=0), return_dict=True
... )
... }
>>> # instantiate beam scorer
>>> beam_scorer = BeamSearchScorer(
... batch_size=1,
... num_beams=num_beams,
... device=model.device,
... )
>>> # instantiate logits processors
>>> logits_processor = LogitsProcessorList(
... [
... MinLengthLogitsProcessor(5, eos_token_id=model.config.eos_token_id),
... ]
... )
>>> outputs = model.beam_search(input_ids, beam_scorer, logits_processor=logits_processor, **model_kwargs)
>>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
['Wie alt bist du?']
( input_ids: LongTensor beam_scorer: BeamScorer logits_processor: Optional = None stopping_criteria: Optional = None logits_warper: Optional = None max_length: Optional = None pad_token_id: Optional = None eos_token_id: Union = None output_attentions: Optional = None output_hidden_states: Optional = None output_scores: Optional = None return_dict_in_generate: Optional = None synced_gpus: bool = False **model_kwargs )
Parameters
torch.LongTensor
of shape (batch_size, sequence_length)
) —
The sequence used as a prompt for the generation. BeamScorer
) —
A derived instance of BeamScorer that defines how beam hypotheses are constructed, stored and
sorted during generation. For more information, the documentation of BeamScorer should be read. LogitsProcessorList
, optional) —
An instance of LogitsProcessorList. List of instances of class derived from LogitsProcessor
used to modify the prediction scores of the language modeling head applied at each generation step. StoppingCriteriaList
, optional) —
An instance of StoppingCriteriaList. List of instances of class derived from StoppingCriteria
used to tell if the generation loop should stop. LogitsProcessorList
, optional) —
An instance of LogitsProcessorList. List of instances of class derived from LogitsWarper used
to warp the prediction score distribution of the language modeling head applied before multinomial
sampling at each generation step. int
, optional, defaults to 20) —
DEPRECATED. Use logits_processor
or stopping_criteria
directly to cap the number of generated
tokens. The maximum length of the sequence to be generated. int
, optional) —
The id of the padding token. Union[int, List[int]]
, optional) —
The id of the end-of-sequence token. Optionally, use a list to set multiple end-of-sequence tokens. bool
, optional, defaults to False
) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under
returned tensors for more details. bool
, optional, defaults to False
) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors
for more details. bool
, optional, defaults to False
) —
Whether or not to return the prediction scores. See scores
under returned tensors for more details. bool
, optional, defaults to False
) —
Whether or not to return a ModelOutput instead of a plain tuple. bool
, optional, defaults to False
) —
Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
model_kwargs —
Additional model specific kwargs will be forwarded to the forward
function of the model. If model is
an encoder-decoder model the kwargs should include encoder_outputs
. Generates sequences of token ids for models with a language modeling head using beam search multinomial sampling and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.
In most cases, you do not need to call beam_sample() directly. Use generate() instead. For an overview of generation strategies and code examples, check the following guide.
Examples:
>>> from transformers import (
... AutoTokenizer,
... AutoModelForSeq2SeqLM,
... LogitsProcessorList,
... MinLengthLogitsProcessor,
... TopKLogitsWarper,
... TemperatureLogitsWarper,
... BeamSearchScorer,
... )
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base")
>>> model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base")
>>> encoder_input_str = "translate English to German: How old are you?"
>>> encoder_input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids
>>> # lets run beam search using 3 beams
>>> num_beams = 3
>>> # define decoder start token ids
>>> input_ids = torch.ones((num_beams, 1), device=model.device, dtype=torch.long)
>>> input_ids = input_ids * model.config.decoder_start_token_id
>>> # add encoder_outputs to model keyword arguments
>>> model_kwargs = {
... "encoder_outputs": model.get_encoder()(
... encoder_input_ids.repeat_interleave(num_beams, dim=0), return_dict=True
... )
... }
>>> # instantiate beam scorer
>>> beam_scorer = BeamSearchScorer(
... batch_size=1,
... max_length=model.config.max_length,
... num_beams=num_beams,
... device=model.device,
... )
>>> # instantiate logits processors
>>> logits_processor = LogitsProcessorList(
... [MinLengthLogitsProcessor(5, eos_token_id=model.config.eos_token_id)]
... )
>>> # instantiate logits processors
>>> logits_warper = LogitsProcessorList(
... [
... TopKLogitsWarper(50),
... TemperatureLogitsWarper(0.7),
... ]
... )
>>> outputs = model.beam_sample(
... input_ids, beam_scorer, logits_processor=logits_processor, logits_warper=logits_warper, **model_kwargs
... )
>>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
['Wie alt bist du?']
( input_ids: LongTensor top_k: Optional = 1 penalty_alpha: Optional = 0 logits_processor: Optional = None logits_warper: Optional = None stopping_criteria: Optional = None pad_token_id: Optional = None eos_token_id: Union = None output_attentions: Optional = None output_hidden_states: Optional = None output_scores: Optional = None return_dict_in_generate: Optional = None synced_gpus: bool = False streamer: Optional = None sequential: Optional = None **model_kwargs )
Parameters
torch.LongTensor
of shape (batch_size, sequence_length)
) —
The sequence used as a prompt for the generation. int
, optional, defaults to 1) —
The size of the candidate set that is used to re-rank for contrastive search float
, optional, defaults to 0) —
The degeneration penalty for contrastive search; activate when it is larger than 0 LogitsProcessorList
, optional) —
An instance of LogitsProcessorList. List of instances of class derived from LogitsProcessor
used to modify the prediction scores of the language modeling head applied at each generation step. LogitsProcessorList
, optional) —
An instance of LogitsProcessorList. List of instances of class derived from LogitsWarper used
to warp the prediction score distribution of the language modeling head applied before multinomial
sampling at each generation step. StoppingCriteriaList
, optional) —
An instance of StoppingCriteriaList. List of instances of class derived from StoppingCriteria
used to tell if the generation loop should stop. int
, optional) —
The id of the padding token. Union[int, List[int]]
, optional) —
The id of the end-of-sequence token. Optionally, use a list to set multiple end-of-sequence tokens. bool
, optional, defaults to False
) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under
returned tensors for more details. bool
, optional, defaults to False
) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors
for more details. bool
, optional, defaults to False
) —
Whether or not to return the prediction scores. See scores
under returned tensors for more details. bool
, optional, defaults to False
) —
Whether or not to return a ModelOutput instead of a plain tuple. bool
, optional, defaults to False
) —
Whether to continue running the while loop until max_length (needed for ZeRO stage 3) BaseStreamer
, optional) —
Streamer object that will be used to stream the generated sequences. Generated tokens are passed
through streamer.put(token_ids)
and the streamer is responsible for any further processing. bool
, optional) —
Switches topk hidden state computation from parallel to sequential to reduce memory if True.
model_kwargs —
Additional model specific keyword arguments will be forwarded to the forward
function of the model.
If model is an encoder-decoder model the kwargs should include encoder_outputs
. Generates sequences of token ids for models with a language modeling head using contrastive search and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.
In most cases, you do not need to call contrastive_search() directly. Use generate() instead. For an overview of generation strategies and code examples, check the following guide.
Examples:
>>> from transformers import (
... AutoTokenizer,
... AutoModelForCausalLM,
... StoppingCriteriaList,
... MaxLengthCriteria,
... )
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/opt-125m")
>>> model = AutoModelForCausalLM.from_pretrained("facebook/opt-125m")
>>> # set pad_token_id to eos_token_id because OPT does not have a PAD token
>>> model.config.pad_token_id = model.config.eos_token_id
>>> input_prompt = "DeepMind Company is"
>>> input_ids = tokenizer(input_prompt, return_tensors="pt")
>>> stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=64)])
>>> outputs = model.contrastive_search(
... **input_ids, penalty_alpha=0.6, top_k=4, stopping_criteria=stopping_criteria
... )
>>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
['DeepMind Company is a company that focuses on the development and commercialization of artificial intelligence (AI). DeepMind’s mission is to help people understand and solve problems that are difficult to solve in the world today.\n\nIn this post, we talk about the benefits of deep learning in business and how it']
( input_ids: LongTensor beam_scorer: BeamScorer logits_processor: Optional = None stopping_criteria: Optional = None max_length: Optional = None pad_token_id: Optional = None eos_token_id: Union = None output_attentions: Optional = None output_hidden_states: Optional = None output_scores: Optional = None return_dict_in_generate: Optional = None synced_gpus: bool = False **model_kwargs )
Parameters
torch.LongTensor
of shape (batch_size, sequence_length)
) —
The sequence used as a prompt for the generation. BeamScorer
) —
An derived instance of BeamScorer that defines how beam hypotheses are constructed, stored and
sorted during generation. For more information, the documentation of BeamScorer should be read. LogitsProcessorList
, optional) —
An instance of LogitsProcessorList. List of instances of class derived from LogitsProcessor
used to modify the prediction scores of the language modeling head applied at each generation step. StoppingCriteriaList
, optional) —
An instance of StoppingCriteriaList. List of instances of class derived from StoppingCriteria
used to tell if the generation loop should stop. int
, optional, defaults to 20) —
DEPRECATED. Use logits_processor
or stopping_criteria
directly to cap the number of generated
tokens. The maximum length of the sequence to be generated. int
, optional) —
The id of the padding token. Union[int, List[int]]
, optional) —
The id of the end-of-sequence token. Optionally, use a list to set multiple end-of-sequence tokens. bool
, optional, defaults to False
) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under
returned tensors for more details. bool
, optional, defaults to False
) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors
for more details. bool
, optional, defaults to False
) —
Whether or not to return the prediction scores. See scores
under returned tensors for more details. bool
, optional, defaults to False
) —
Whether or not to return a ModelOutput instead of a plain tuple. bool
, optional, defaults to False
) —
Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
model_kwargs —
Additional model specific kwargs that will be forwarded to the forward
function of the model. If
model is an encoder-decoder model the kwargs should include encoder_outputs
.
Generates sequences of token ids for models with a language modeling head using diverse beam search decoding and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.
In most cases, you do not need to call group_beam_search() directly. Use generate() instead. For an overview of generation strategies and code examples, check the following guide.
Examples:
>>> from transformers import (
... AutoTokenizer,
... AutoModelForSeq2SeqLM,
... LogitsProcessorList,
... MinLengthLogitsProcessor,
... HammingDiversityLogitsProcessor,
... BeamSearchScorer,
... )
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base")
>>> model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base")
>>> encoder_input_str = "translate English to German: How old are you?"
>>> encoder_input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids
>>> # lets run diverse beam search using 6 beams
>>> num_beams = 6
>>> # define decoder start token ids
>>> input_ids = torch.ones((num_beams, 1), device=model.device, dtype=torch.long)
>>> input_ids = input_ids * model.config.decoder_start_token_id
>>> # add encoder_outputs to model keyword arguments
>>> model_kwargs = {
... "encoder_outputs": model.get_encoder()(
... encoder_input_ids.repeat_interleave(num_beams, dim=0), return_dict=True
... )
... }
>>> # instantiate beam scorer
>>> beam_scorer = BeamSearchScorer(
... batch_size=1,
... max_length=model.config.max_length,
... num_beams=num_beams,
... device=model.device,
... num_beam_groups=3,
... )
>>> # instantiate logits processors
>>> logits_processor = LogitsProcessorList(
... [
... HammingDiversityLogitsProcessor(5.5, num_beams=6, num_beam_groups=3),
... MinLengthLogitsProcessor(5, eos_token_id=model.config.eos_token_id),
... ]
... )
>>> outputs = model.group_beam_search(
... input_ids, beam_scorer, logits_processor=logits_processor, **model_kwargs
... )
>>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
['Wie alt bist du?']
( input_ids: LongTensor constrained_beam_scorer: ConstrainedBeamSearchScorer logits_processor: Optional = None stopping_criteria: Optional = None max_length: Optional = None pad_token_id: Optional = None eos_token_id: Union = None output_attentions: Optional = None output_hidden_states: Optional = None output_scores: Optional = None return_dict_in_generate: Optional = None synced_gpus: Optional = None **model_kwargs )
Parameters
torch.LongTensor
of shape (batch_size, sequence_length)
) —
The sequence used as a prompt for the generation. ConstrainedBeamSearchScorer
) —
A derived instance of BeamScorer that defines how beam hypotheses are constructed, stored and
sorted during generation, while satisfying a list of positive constraints. For more information, the
documentation of ConstrainedBeamSearchScorer should be read. LogitsProcessorList
, optional) —
An instance of LogitsProcessorList. List of instances of class derived from LogitsProcessor
used to modify the prediction scores of the language modeling head applied at each generation step. StoppingCriteriaList
, optional) —
An instance of StoppingCriteriaList. List of instances of class derived from StoppingCriteria
used to tell if the generation loop should stop. LogitsProcessorList
, optional) —
An instance of LogitsProcessorList. List of instances of class derived from LogitsWarper used
to warp the prediction score distribution of the language modeling head applied before multinomial
sampling at each generation step. int
, optional, defaults to 20) —
DEPRECATED. Use logits_processor
or stopping_criteria
directly to cap the number of generated
tokens. The maximum length of the sequence to be generated. int
, optional) —
The id of the padding token. Union[int, List[int]]
, optional) —
The id of the end-of-sequence token. Optionally, use a list to set multiple end-of-sequence tokens. bool
, optional, defaults to False
) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under
returned tensors for more details. bool
, optional, defaults to False
) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors
for more details. bool
, optional, defaults to False
) —
Whether or not to return the prediction scores. See scores
under returned tensors for more details. bool
, optional, defaults to False
) —
Whether or not to return a ModelOutput instead of a plain tuple. bool
, optional, defaults to False
) —
Whether to continue running the while loop until max_length (needed for ZeRO stage 3)
model_kwargs —
Additional model specific kwargs will be forwarded to the forward
function of the model. If model is
an encoder-decoder model the kwargs should include encoder_outputs
. Generates sequences of token ids for models with a language modeling head using constrained beam search decoding and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.
In most cases, you do not need to call constrained_beam_search() directly. Use generate() instead. For an overview of generation strategies and code examples, check the following guide.
Examples:
>>> from transformers import (
... AutoTokenizer,
... AutoModelForSeq2SeqLM,
... LogitsProcessorList,
... MinLengthLogitsProcessor,
... ConstrainedBeamSearchScorer,
... PhrasalConstraint,
... )
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base")
>>> model = AutoModelForSeq2SeqLM.from_pretrained("google-t5/t5-base")
>>> encoder_input_str = "translate English to German: How old are you?"
>>> encoder_input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids
>>> # lets run beam search using 3 beams
>>> num_beams = 3
>>> # define decoder start token ids
>>> input_ids = torch.ones((num_beams, 1), device=model.device, dtype=torch.long)
>>> input_ids = input_ids * model.config.decoder_start_token_id
>>> # add encoder_outputs to model keyword arguments
>>> model_kwargs = {
... "encoder_outputs": model.get_encoder()(
... encoder_input_ids.repeat_interleave(num_beams, dim=0), return_dict=True
... )
... }
>>> constraint_str = "Sie"
>>> constraint_token_ids = tokenizer.encode(constraint_str)[:-1] # slice to remove eos token
>>> constraints = [PhrasalConstraint(token_ids=constraint_token_ids)]
>>> # instantiate beam scorer
>>> beam_scorer = ConstrainedBeamSearchScorer(
... batch_size=1, num_beams=num_beams, device=model.device, constraints=constraints
... )
>>> # instantiate logits processors
>>> logits_processor = LogitsProcessorList(
... [
... MinLengthLogitsProcessor(5, eos_token_id=model.config.eos_token_id),
... ]
... )
>>> outputs = model.constrained_beam_search(
... input_ids, beam_scorer, constraints=constraints, logits_processor=logits_processor, **model_kwargs
... )
>>> tokenizer.batch_decode(outputs, skip_special_tokens=True)
['Wie alt sind Sie?']
A class containing all of the functions supporting generation, to be used as a mixin in TFPreTrainedModel.
The class exposes generate(), which can be used for:
greedy_search()
if num_beams=1
and
do_sample=False
contrastive_search()
if penalty_alpha>0
and
top_k>1
sample()
if num_beams=1
and
do_sample=True
beam_search()
if num_beams>1
You do not need to call any of the above methods directly. Pass custom parameter values to ‘generate’ instead. To learn more about decoding strategies refer to the text generation strategies guide.
( inputs: Optional = None generation_config: Optional = None logits_processor: Optional = None seed = None **kwargs ) → ModelOutput or tf.Tensor
Parameters
tf.Tensor
of varying shape depending on the modality, optional) —
The sequence used as a prompt for the generation or as model inputs to the encoder. If None
the
method initializes it with bos_token_id
and a batch size of 1. For decoder-only models inputs
should of in the format of input_ids
. For encoder-decoder models inputs can represent any of
input_ids
, input_values
, input_features
, or pixel_values
. ~generation.GenerationConfig
, optional) —
The generation configuration to be used as base parametrization for the generation call. **kwargs
passed to generate matching the attributes of generation_config
will override them. If
generation_config
is not provided, the default will be used, which had the following loading
priority: 1) from the generation_config.json
model file, if it exists; 2) from the model
configuration. Please note that unspecified parameters will inherit GenerationConfig’s
default values, whose documentation should be checked to parameterize generation. LogitsProcessorList
, optional) —
Custom logits processors that complement the default logits processors built from arguments and
generation config. If a logit processor is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users. List[int]
, optional) —
Random seed to control sampling, containing two integers, used when do_sample
is True
. See the
seed
argument from stateless functions in tf.random
. Dict[str, Any]
, optional) —
Ad hoc parametrization of generate_config
and/or additional model-specific kwargs that will be
forwarded to the forward
function of the model. If the model is an encoder-decoder model, encoder
specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with decoder_. Returns
ModelOutput or tf.Tensor
A ModelOutput (if return_dict_in_generate=True
or when
config.return_dict_in_generate=True
) or a tf.Tensor
.
If the model is not an encoder-decoder model (model.config.is_encoder_decoder=False
), the possible
ModelOutput types are:
If the model is an encoder-decoder model (model.config.is_encoder_decoder=True
), the possible
ModelOutput types are:
Generates sequences of token ids for models with a language modeling head.
Most generation-controlling parameters are set in generation_config
which, if not passed, will be set to the
model’s default generation configuration. You can override any generation_config
by passing the corresponding
parameters to generate, e.g. .generate(inputs, num_beams=4, do_sample=True)
.
For an overview of generation strategies and code examples, check out the following guide.
( sequences: Tensor scores: Tuple beam_indices: Optional = None normalize_logits: bool = False ) → tf.Tensor
Parameters
tf.Tensor
) —
The generated sequences. The second dimension (sequence_length) is either equal to max_length
or
shorter if all batches finished early due to the eos_token_id
. tuple(tf.Tensor)
) —
Transition scores for each vocabulary token at each generation step. Beam transition scores consisting
of log probabilities of tokens conditioned on log softmax of previously generated tokens Tuple of
tf.Tensor
with up to max_new_tokens
elements (one element for each generated token), with each
tensor of shape (batch_size*num_beams, config.vocab_size)
. tf.Tensor
, optional) —
Beam indices of generated token id at each generation step. tf.Tensor
of shape
(batch_size*num_return_sequences, sequence_length)
. Only required if a num_beams>1
at
generate-time. bool
, optional, defaults to False
) —
Whether to normalize the logits (which, for legacy reasons, may be unnormalized). Returns
tf.Tensor
A tf.Tensor
of shape (batch_size*num_return_sequences, sequence_length)
containing
the transition scores (logits)
Computes the transition scores of sequences given the generation scores (and beam indices, if beam search was used). This is a convenient method to quicky obtain the scores of the selected tokens at generation time.
Examples:
>>> from transformers import GPT2Tokenizer, TFAutoModelForCausalLM
>>> import numpy as np
>>> tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
>>> model = TFAutoModelForCausalLM.from_pretrained("openai-community/gpt2")
>>> tokenizer.pad_token_id = tokenizer.eos_token_id
>>> inputs = tokenizer(["Today is"], return_tensors="tf")
>>> # Example 1: Print the scores for each token generated with Greedy Search
>>> outputs = model.generate(**inputs, max_new_tokens=5, return_dict_in_generate=True, output_scores=True)
>>> transition_scores = model.compute_transition_scores(
... outputs.sequences, outputs.scores, normalize_logits=True
... )
>>> # input_length is the length of the input prompt for decoder-only models, like the GPT family, and 1 for
>>> # encoder-decoder models, like BART or T5.
>>> input_length = 1 if model.config.is_encoder_decoder else inputs.input_ids.shape[1]
>>> generated_tokens = outputs.sequences[:, input_length:]
>>> for tok, score in zip(generated_tokens[0], transition_scores[0]):
... # | token | token string | logits | probability
... print(f"| {tok:5d} | {tokenizer.decode(tok):8s} | {score.numpy():.3f} | {np.exp(score.numpy()):.2%}")
| 262 | the | -1.413 | 24.33%
| 1110 | day | -2.609 | 7.36%
| 618 | when | -2.009 | 13.41%
| 356 | we | -1.859 | 15.58%
| 460 | can | -2.508 | 8.14%
>>> # Example 2: Reconstruct the sequence scores from Beam Search
>>> outputs = model.generate(
... **inputs,
... max_new_tokens=5,
... num_beams=4,
... num_return_sequences=4,
... return_dict_in_generate=True,
... output_scores=True,
... )
>>> transition_scores = model.compute_transition_scores(
... outputs.sequences, outputs.scores, outputs.beam_indices, normalize_logits=False
... )
>>> # If you sum the generated tokens' scores and apply the length penalty, you'll get the sequence scores.
>>> # Tip: recomputing the scores is only guaranteed to match with `normalize_logits=False`. Depending on the
>>> # use case, you might want to recompute it with `normalize_logits=True`.
>>> output_length = input_length + np.sum(transition_scores.numpy() < 0, axis=1)
>>> length_penalty = model.generation_config.length_penalty
>>> reconstructed_scores = np.sum(transition_scores, axis=1) / (output_length**length_penalty)
>>> print(np.allclose(outputs.sequences_scores, reconstructed_scores))
True
A class containing all functions for auto-regressive text generation, to be used as a mixin in FlaxPreTrainedModel.
The class exposes generate(), which can be used for:
_greedy_search()
if num_beams=1
and
do_sample=False
_sample()
if num_beams=1
and
do_sample=True
_beam_search()
if num_beams>1
and
do_sample=False
You do not need to call any of the above methods directly. Pass custom parameter values to ‘generate’ instead. To learn more about decoding strategies refer to the text generation strategies guide.
( input_ids: Array generation_config: Optional = None prng_key: Optional = None trace: bool = True params: Optional = None logits_processor: Optional = None **kwargs )
Parameters
jnp.ndarray
of shape (batch_size, sequence_length)
) —
The sequence used as a prompt for the generation. ~generation.GenerationConfig
, optional) —
The generation configuration to be used as base parametrization for the generation call. **kwargs
passed to generate matching the attributes of generation_config
will override them. If
generation_config
is not provided, the default will be used, which had the following loading
priority: 1) from the generation_config.json
model file, if it exists; 2) from the model
configuration. Please note that unspecified parameters will inherit GenerationConfig’s
default values, whose documentation should be checked to parameterize generation. bool
, optional, defaults to True
) —
Whether to trace generation. Setting trace=False
should only be used for debugging and will lead to a
considerably slower runtime. Dict[str, jnp.ndarray]
, optional) —
Optionally the model parameters can be passed. Can be useful for parallelized generation. FlaxLogitsProcessorList
, optional) —
Custom logits processors that complement the default logits processors built from arguments and
generation config. If a logit processor is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users. Dict[str, Any]
, optional) —
Ad hoc parametrization of generate_config
and/or additional model-specific kwargs that will be
forwarded to the forward
function of the model. If the model is an encoder-decoder model, encoder
specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with decoder_. Generates sequences of token ids for models with a language modeling head.