The MBart model was presented in Multilingual Denoising Pre-training for Neural Machine Translation by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
According to the abstract, MBART is a sequence-to-sequence denoising auto-encoder pretrained on large-scale monolingual corpora in many languages using the BART objective. mBART is one of the first methods for pretraining a complete sequence-to-sequence model by denoising full texts in multiple languages, while previous approaches have focused only on the encoder, decoder, or reconstructing parts of the text.
This model was contributed by valhalla. The Authors’ code can be found here
MBart is a multilingual encoder-decoder (sequence-to-sequence) model primarily intended for translation task. As the
model is multilingual it expects the sequences in a different format. A special language id token is added in both the
source and target text. The source text format is X [eos, src_lang_code]
where X
is the source text. The
target text format is [tgt_lang_code] X [eos]
. bos
is never used.
The regular call() will encode source text format passed as first argument or with the text
keyword, and target text format passed with the text_label
keyword argument.
>>> from transformers import MBartForConditionalGeneration, MBartTokenizer
>>> tokenizer = MBartTokenizer.from_pretrained("facebook/mbart-large-en-ro", src_lang="en_XX", tgt_lang="ro_RO")
>>> example_english_phrase = "UN Chief Says There Is No Military Solution in Syria"
>>> expected_translation_romanian = "Şeful ONU declară că nu există o soluţie militară în Siria"
>>> inputs = tokenizer(example_english_phrase, text_target=expected_translation_romanian, return_tensors="pt")
>>> model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-en-ro")
>>> # forward pass
>>> model(**inputs)
Generation
While generating the target text set the decoder_start_token_id
to the target language id. The following
example shows how to translate English to Romanian using the facebook/mbart-large-en-ro model.
>>> from transformers import MBartForConditionalGeneration, MBartTokenizer
>>> tokenizer = MBartTokenizer.from_pretrained("facebook/mbart-large-en-ro", src_lang="en_XX")
>>> article = "UN Chief Says There Is No Military Solution in Syria"
>>> inputs = tokenizer(article, return_tensors="pt")
>>> translated_tokens = model.generate(**inputs, decoder_start_token_id=tokenizer.lang_code_to_id["ro_RO"])
>>> tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
"Şeful ONU declară că nu există o soluţie militară în Siria"
MBart-50 was introduced in the Multilingual Translation with Extensible Multilingual Pretraining and Finetuning paper by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan. MBart-50 is created using the original mbart-large-cc25 checkpoint by extendeding its embedding layers with randomly initialized vectors for an extra set of 25 language tokens and then pretrained on 50 languages.
According to the abstract
Multilingual translation models can be created through multilingual finetuning. Instead of finetuning on one direction, a pretrained model is finetuned on many directions at the same time. It demonstrates that pretrained models can be extended to incorporate additional languages without loss of performance. Multilingual finetuning improves on average 1 BLEU over the strongest baselines (being either multilingual from scratch or bilingual finetuning) while improving 9.3 BLEU on average over bilingual baselines from scratch.
The text format for MBart-50 is slightly different from mBART. For MBart-50 the language id token is used as a prefix
for both source and target text i.e the text format is [lang_code] X [eos]
, where lang_code
is source
language id for source text and target language id for target text, with X
being the source or target text
respectively.
MBart-50 has its own tokenizer MBart50Tokenizer.
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50")
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50", src_lang="en_XX", tgt_lang="ro_RO")
src_text = " UN Chief Says There Is No Military Solution in Syria"
tgt_text = "Şeful ONU declară că nu există o soluţie militară în Siria"
model_inputs = tokenizer(src_text, text_target=tgt_text, return_tensors="pt")
model(**model_inputs) # forward pass
Generation
To generate using the mBART-50 multilingual translation models, eos_token_id
is used as the
decoder_start_token_id
and the target language id is forced as the first generated token. To force the
target language id as the first generated token, pass the forced_bos_token_id parameter to the generate method.
The following example shows how to translate between Hindi to French and Arabic to English using the
facebook/mbart-50-large-many-to-many checkpoint.
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
article_hi = "संयुक्त राष्ट्र के प्रमुख का कहना है कि सीरिया में कोई सैन्य समाधान नहीं है"
article_ar = "الأمين العام للأمم المتحدة يقول إنه لا يوجد حل عسكري في سوريا."
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
# translate Hindi to French
tokenizer.src_lang = "hi_IN"
encoded_hi = tokenizer(article_hi, return_tensors="pt")
generated_tokens = model.generate(**encoded_hi, forced_bos_token_id=tokenizer.lang_code_to_id["fr_XX"])
tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
# => "Le chef de l 'ONU affirme qu 'il n 'y a pas de solution militaire en Syria."
# translate Arabic to English
tokenizer.src_lang = "ar_AR"
encoded_ar = tokenizer(article_ar, return_tensors="pt")
generated_tokens = model.generate(**encoded_ar, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"])
tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
# => "The Secretary-General of the United Nations says there is no military solution in Syria."
( vocab_size = 50265 max_position_embeddings = 1024 encoder_layers = 12 encoder_ffn_dim = 4096 encoder_attention_heads = 16 decoder_layers = 12 decoder_ffn_dim = 4096 decoder_attention_heads = 16 encoder_layerdrop = 0.0 decoder_layerdrop = 0.0 use_cache = True is_encoder_decoder = True activation_function = 'gelu' d_model = 1024 dropout = 0.1 attention_dropout = 0.0 activation_dropout = 0.0 init_std = 0.02 classifier_dropout = 0.0 scale_embedding = False pad_token_id = 1 bos_token_id = 0 eos_token_id = 2 forced_eos_token_id = 2 **kwargs )
Parameters
int
, optional, defaults to 50265) —
Vocabulary size of the MBART model. Defines the number of different tokens that can be represented by the
inputs_ids
passed when calling MBartModel or TFMBartModel. int
, optional, defaults to 1024) —
Dimensionality of the layers and the pooler layer. int
, optional, defaults to 12) —
Number of encoder layers. int
, optional, defaults to 12) —
Number of decoder layers. int
, optional, defaults to 16) —
Number of attention heads for each attention layer in the Transformer encoder. int
, optional, defaults to 16) —
Number of attention heads for each attention layer in the Transformer decoder. int
, optional, defaults to 4096) —
Dimensionality of the “intermediate” (often named feed-forward) layer in decoder. int
, optional, defaults to 4096) —
Dimensionality of the “intermediate” (often named feed-forward) layer in decoder. str
or function
, optional, defaults to "gelu"
) —
The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu"
,
"relu"
, "silu"
and "gelu_new"
are supported. float
, optional, defaults to 0.1) —
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. float
, optional, defaults to 0.0) —
The dropout ratio for the attention probabilities. float
, optional, defaults to 0.0) —
The dropout ratio for activations inside the fully connected layer. float
, optional, defaults to 0.0) —
The dropout ratio for classifier. int
, optional, defaults to 1024) —
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048). float
, optional, defaults to 0.02) —
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. float
, optional, defaults to 0.0) —
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details. float
, optional, defaults to 0.0) —
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details. bool
, optional, defaults to False
) —
Scale embeddings by diving by sqrt(d_model). bool
, optional, defaults to True
) —
Whether or not the model should return the last key/values attentions (not used by all models) int
, optional, defaults to 2) —
The id of the token to force as the last generated token when max_length
is reached. Usually set to
eos_token_id
. This is the configuration class to store the configuration of a MBartModel. It is used to instantiate an MBART model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the MBART facebook/mbart-large-cc25 architecture.
Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.
Example:
>>> from transformers import MBartConfig, MBartModel
>>> # Initializing a MBART facebook/mbart-large-cc25 style configuration
>>> configuration = MBartConfig()
>>> # Initializing a model (with random weights) from the facebook/mbart-large-cc25 style configuration
>>> model = MBartModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
( vocab_file bos_token = '<s>' eos_token = '</s>' sep_token = '</s>' cls_token = '<s>' unk_token = '<unk>' pad_token = '<pad>' mask_token = '<mask>' tokenizer_file = None src_lang = None tgt_lang = None sp_model_kwargs: Optional = None additional_special_tokens = None **kwargs )
Construct an MBART tokenizer.
Adapted from RobertaTokenizer and XLNetTokenizer. Based on SentencePiece.
The tokenization method is <tokens> <eos> <language code>
for source language documents, and `<language code>
Examples:
>>> from transformers import MBartTokenizer
>>> tokenizer = MBartTokenizer.from_pretrained("facebook/mbart-large-en-ro", src_lang="en_XX", tgt_lang="ro_RO")
>>> example_english_phrase = " UN Chief Says There Is No Military Solution in Syria"
>>> expected_translation_romanian = "Şeful ONU declară că nu există o soluţie militară în Siria"
>>> inputs = tokenizer(example_english_phrase, text_target=expected_translation_romanian, return_tensors="pt")
( token_ids_0: List token_ids_1: Optional = None ) → List[int]
Parameters
List[int]
) —
List of IDs to which the special tokens will be added. List[int]
, optional) —
Optional second list of IDs for sequence pairs. Returns
List[int]
List of input IDs with the appropriate special tokens.
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. An MBART sequence has the following format, where X
represents the sequence:
input_ids
(for encoder) X [eos, src_lang_code]
decoder_input_ids
: (for decoder) X [eos, tgt_lang_code]
BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a separator.
( vocab_file = None tokenizer_file = None bos_token = '<s>' eos_token = '</s>' sep_token = '</s>' cls_token = '<s>' unk_token = '<unk>' pad_token = '<pad>' mask_token = '<mask>' src_lang = None tgt_lang = None additional_special_tokens = None **kwargs )
Construct a “fast” MBART tokenizer (backed by HuggingFace’s tokenizers library). Based on BPE.
This tokenizer inherits from PreTrainedTokenizerFast which contains most of the main methods. Users should refer to this superclass for more information regarding those methods.
The tokenization method is <tokens> <eos> <language code>
for source language documents, and `<language code>
Examples:
>>> from transformers import MBartTokenizerFast
>>> tokenizer = MBartTokenizerFast.from_pretrained(
... "facebook/mbart-large-en-ro", src_lang="en_XX", tgt_lang="ro_RO"
... )
>>> example_english_phrase = " UN Chief Says There Is No Military Solution in Syria"
>>> expected_translation_romanian = "Şeful ONU declară că nu există o soluţie militară în Siria"
>>> inputs = tokenizer(example_english_phrase, text_target=expected_translation_romanian, return_tensors="pt")
( token_ids_0: List token_ids_1: Optional = None ) → List[int]
Parameters
List[int]
) —
List of IDs to which the special tokens will be added. List[int]
, optional) —
Optional second list of IDs for sequence pairs. Returns
List[int]
list of input IDs with the appropriate special tokens.
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. The special tokens depend on calling set_lang.
An MBART sequence has the following format, where X
represents the sequence:
input_ids
(for encoder) X [eos, src_lang_code]
decoder_input_ids
: (for decoder) X [eos, tgt_lang_code]
BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a separator.
( token_ids_0: List token_ids_1: Optional = None ) → List[int]
Create a mask from the two sequences passed to be used in a sequence-pair classification task. mBART does not make use of token type ids, therefore a list of zeros is returned.
Reset the special tokens to the source lang setting. No prefix and suffix=[eos, src_lang_code].
Reset the special tokens to the target language setting. No prefix and suffix=[eos, tgt_lang_code].
( vocab_file src_lang = None tgt_lang = None eos_token = '</s>' sep_token = '</s>' cls_token = '<s>' unk_token = '<unk>' pad_token = '<pad>' mask_token = '<mask>' sp_model_kwargs: Optional = None **kwargs )
Parameters
str
) —
Path to the vocabulary file. str
, optional) —
A string representing the source language. str
, optional) —
A string representing the target language. str
, optional, defaults to "</s>"
) —
The end of sequence token. str
, optional, defaults to "</s>"
) —
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens. str
, optional, defaults to "<s>"
) —
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens. str
, optional, defaults to "<unk>"
) —
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead. str
, optional, defaults to "<pad>"
) —
The token used for padding, for example when batching sequences of different lengths. str
, optional, defaults to "<mask>"
) —
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict. dict
, optional) —
Will be passed to the SentencePieceProcessor.__init__()
method. The Python wrapper for
SentencePiece can be used, among other things,
to set:
enable_sampling
: Enable subword regularization.
nbest_size
: Sampling parameters for unigram. Invalid for BPE-Dropout.
nbest_size = {0,1}
: No sampling is performed.nbest_size > 1
: samples from the nbest_size results.nbest_size < 0
: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
using forward-filtering-and-backward-sampling algorithm.alpha
: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
BPE-dropout.
Construct a MBart50 tokenizer. Based on SentencePiece.
This tokenizer inherits from PreTrainedTokenizer which contains most of the main methods. Users should refer to this superclass for more information regarding those methods.
Examples:
>>> from transformers import MBart50Tokenizer
>>> tokenizer = MBart50Tokenizer.from_pretrained("facebook/mbart-large-50", src_lang="en_XX", tgt_lang="ro_RO")
>>> src_text = " UN Chief Says There Is No Military Solution in Syria"
>>> tgt_text = "Şeful ONU declară că nu există o soluţie militară în Siria"
>>> model_inputs = tokenizer(src_text, text_target=tgt_text, return_tensors="pt")
>>> # model(**model_inputs) should work
( token_ids_0: List token_ids_1: Optional = None ) → List[int]
Parameters
List[int]
) —
List of IDs to which the special tokens will be added. List[int]
, optional) —
Optional second list of IDs for sequence pairs. Returns
List[int]
List of input IDs with the appropriate special tokens.
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. An MBART-50 sequence has the following format, where X
represents the sequence:
input_ids
(for encoder) [src_lang_code] X [eos]
labels
: (for decoder) [tgt_lang_code] X [eos]
BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a separator.
Converts a sequence of tokens (string) in a single string.
( token_ids_0: List token_ids_1: Optional = None already_has_special_tokens: bool = False ) → List[int]
Parameters
List[int]
) —
List of IDs. List[int]
, optional) —
Optional second list of IDs for sequence pairs. bool
, optional, defaults to False
) —
Whether or not the token list is already formatted with special tokens for the model. Returns
List[int]
A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer prepare_for_model
method.
Reset the special tokens to the source lang setting. prefix=[src_lang_code] and suffix=[eos].
Reset the special tokens to the target language setting. prefix=[tgt_lang_code] and suffix=[eos].
( vocab_file = None src_lang = None tgt_lang = None tokenizer_file = None eos_token = '</s>' sep_token = '</s>' cls_token = '<s>' unk_token = '<unk>' pad_token = '<pad>' mask_token = '<mask>' **kwargs )
Parameters
str
) —
Path to the vocabulary file. str
, optional) —
A string representing the source language. str
, optional) —
A string representing the target language. str
, optional, defaults to "</s>"
) —
The end of sequence token. str
, optional, defaults to "</s>"
) —
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens. str
, optional, defaults to "<s>"
) —
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens. str
, optional, defaults to "<unk>"
) —
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead. str
, optional, defaults to "<pad>"
) —
The token used for padding, for example when batching sequences of different lengths. str
, optional, defaults to "<mask>"
) —
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict. Construct a “fast” MBART tokenizer for mBART-50 (backed by HuggingFace’s tokenizers library). Based on BPE.
This tokenizer inherits from PreTrainedTokenizerFast which contains most of the main methods. Users should refer to this superclass for more information regarding those methods.
Examples:
>>> from transformers import MBart50TokenizerFast
>>> tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50", src_lang="en_XX", tgt_lang="ro_RO")
>>> src_text = " UN Chief Says There Is No Military Solution in Syria"
>>> tgt_text = "Şeful ONU declară că nu există o soluţie militară în Siria"
>>> model_inputs = tokenizer(src_text, text_target=tgt_text, return_tensors="pt")
>>> # model(**model_inputs) should work
( token_ids_0: List token_ids_1: Optional = None ) → List[int]
Parameters
List[int]
) —
List of IDs to which the special tokens will be added. List[int]
, optional) —
Optional second list of IDs for sequence pairs. Returns
List[int]
list of input IDs with the appropriate special tokens.
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. The special tokens depend on calling set_lang.
An MBART-50 sequence has the following format, where X
represents the sequence:
input_ids
(for encoder) [src_lang_code] X [eos]
labels
: (for decoder) [tgt_lang_code] X [eos]
BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a separator.
Reset the special tokens to the source lang setting. prefix=[src_lang_code] and suffix=[eos].
Reset the special tokens to the target language setting. prefix=[src_lang_code] and suffix=[eos].
( config: MBartConfig )
Parameters
The bare MBART Model outputting raw hidden-states without any specific head on top. This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( input_ids: LongTensor = None attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None head_mask: Optional = None decoder_head_mask: Optional = None cross_attn_head_mask: Optional = None encoder_outputs: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None decoder_inputs_embeds: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.Seq2SeqModelOutput or tuple(torch.FloatTensor)
Parameters
torch.LongTensor
of shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
torch.Tensor
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
torch.LongTensor
of shape (batch_size, target_sequence_length)
, optional) —
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
MBart uses a specific language id token as the starting token for decoder_input_ids
generation that
varies according to source and target language, e.g. 25004 for en_XX, and 25003 for de_DE. If
past_key_values
is used, optionally only the last decoder_input_ids
have to be input (see
past_key_values
).
For translation and summarization training, decoder_input_ids
should be provided. If no
decoder_input_ids
is provided, the model will create this tensor by shifting the input_ids
to the right
for denoising pre-training following the paper.
torch.LongTensor
of shape (batch_size, target_sequence_length)
, optional) —
Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also
be used by default. torch.Tensor
of shape (encoder_layers, encoder_attention_heads)
, optional) —
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in [0, 1]
:
torch.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) —
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in [0, 1]
:
torch.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) —
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in [0, 1]
:
tuple(tuple(torch.FloatTensor)
, optional) —
Tuple consists of (last_hidden_state
, optional: hidden_states
, optional: attentions
)
last_hidden_state
of shape (batch_size, sequence_length, hidden_size)
, optional) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) —
Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape
(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that
don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of all
decoder_input_ids
of shape (batch_size, sequence_length)
.
torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert input_ids
indices into associated vectors
than the model’s internal embedding lookup matrix. torch.FloatTensor
of shape (batch_size, target_sequence_length, hidden_size)
, optional) —
Optionally, instead of passing decoder_input_ids
you can choose to directly pass an embedded
representation. If past_key_values
is used, optionally only the last decoder_inputs_embeds
have to be
input (see past_key_values
). This is useful if you want more control over how to convert
decoder_input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
If decoder_input_ids
and decoder_inputs_embeds
are both unset, decoder_inputs_embeds
takes the value
of inputs_embeds
.
bool
, optional) —
If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see
past_key_values
). bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. Returns
transformers.modeling_outputs.Seq2SeqModelOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.Seq2SeqModelOutput or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (MBartConfig) and inputs.
last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the decoder of the model.
If past_key_values
is used only the last hidden-state of the sequences of shape (batch_size, 1, hidden_size)
is output.
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape
(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the optional initial embedding outputs.
decoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the optional initial embedding outputs.
encoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
The MBartModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, MBartModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> model = MBartModel.from_pretrained("facebook/mbart-large-cc25")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
( config: MBartConfig )
Parameters
The MBART Model with a language modeling head. Can be used for summarization, after fine-tuning the pretrained models. This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( input_ids: LongTensor = None attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None head_mask: Optional = None decoder_head_mask: Optional = None cross_attn_head_mask: Optional = None encoder_outputs: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None decoder_inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.Seq2SeqLMOutput or tuple(torch.FloatTensor)
Parameters
torch.LongTensor
of shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
torch.Tensor
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
torch.LongTensor
of shape (batch_size, target_sequence_length)
, optional) —
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
MBart uses a specific language id token as the starting token for decoder_input_ids
generation that
varies according to source and target language, e.g. 25004 for en_XX, and 25003 for de_DE. If
past_key_values
is used, optionally only the last decoder_input_ids
have to be input (see
past_key_values
).
For translation and summarization training, decoder_input_ids
should be provided. If no
decoder_input_ids
is provided, the model will create this tensor by shifting the input_ids
to the right
for denoising pre-training following the paper.
torch.LongTensor
of shape (batch_size, target_sequence_length)
, optional) —
Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also
be used by default. torch.Tensor
of shape (encoder_layers, encoder_attention_heads)
, optional) —
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in [0, 1]
:
torch.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) —
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in [0, 1]
:
torch.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) —
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in [0, 1]
:
tuple(tuple(torch.FloatTensor)
, optional) —
Tuple consists of (last_hidden_state
, optional: hidden_states
, optional: attentions
)
last_hidden_state
of shape (batch_size, sequence_length, hidden_size)
, optional) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) —
Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape
(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that
don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of all
decoder_input_ids
of shape (batch_size, sequence_length)
.
torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert input_ids
indices into associated vectors
than the model’s internal embedding lookup matrix. torch.FloatTensor
of shape (batch_size, target_sequence_length, hidden_size)
, optional) —
Optionally, instead of passing decoder_input_ids
you can choose to directly pass an embedded
representation. If past_key_values
is used, optionally only the last decoder_inputs_embeds
have to be
input (see past_key_values
). This is useful if you want more control over how to convert
decoder_input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
If decoder_input_ids
and decoder_inputs_embeds
are both unset, decoder_inputs_embeds
takes the value
of inputs_embeds
.
bool
, optional) —
If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see
past_key_values
). bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. torch.LongTensor
of shape (batch_size, sequence_length)
, optional) —
Labels for computing the masked language modeling loss. Indices should either be in [0, ..., config.vocab_size]
or -100 (see input_ids
docstring). Tokens with indices set to -100
are ignored
(masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size]
. Returns
transformers.modeling_outputs.Seq2SeqLMOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.Seq2SeqLMOutput or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (MBartConfig) and inputs.
loss (torch.FloatTensor
of shape (1,)
, optional, returned when labels
is provided) — Language modeling loss.
logits (torch.FloatTensor
of shape (batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape
(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
The MBartForConditionalGeneration forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Translation example:
>>> from transformers import AutoTokenizer, MBartForConditionalGeneration
>>> model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-en-ro")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-en-ro")
>>> example_english_phrase = "42 is the answer"
>>> inputs = tokenizer(example_english_phrase, return_tensors="pt")
>>> # Translate
>>> generated_ids = model.generate(**inputs, num_beams=4, max_length=5)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
'42 este răspuns'
Mask filling example:
>>> from transformers import AutoTokenizer, MBartForConditionalGeneration
>>> model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> # de_DE is the language symbol id <LID> for German
>>> TXT = "</s> Meine Freunde sind <mask> nett aber sie essen zu viel Kuchen. </s> de_DE"
>>> input_ids = tokenizer([TXT], add_special_tokens=False, return_tensors="pt")["input_ids"]
>>> logits = model(input_ids).logits
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
>>> probs = logits[0, masked_index].softmax(dim=0)
>>> values, predictions = probs.topk(5)
>>> tokenizer.decode(predictions).split()
['nett', 'sehr', 'ganz', 'nicht', 'so']
( config )
Parameters
MBART Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layer on top of the hidden-states output to compute span start logits
and span end logits
).
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( input_ids: Tensor = None attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None head_mask: Optional = None decoder_head_mask: Optional = None cross_attn_head_mask: Optional = None encoder_outputs: Optional = None start_positions: Optional = None end_positions: Optional = None inputs_embeds: Optional = None decoder_inputs_embeds: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.Seq2SeqQuestionAnsweringModelOutput or tuple(torch.FloatTensor)
Parameters
torch.LongTensor
of shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
torch.Tensor
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
torch.LongTensor
of shape (batch_size, target_sequence_length)
, optional) —
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
MBart uses a specific language id token as the starting token for decoder_input_ids
generation that
varies according to source and target language, e.g. 25004 for en_XX, and 25003 for de_DE. If
past_key_values
is used, optionally only the last decoder_input_ids
have to be input (see
past_key_values
).
For translation and summarization training, decoder_input_ids
should be provided. If no
decoder_input_ids
is provided, the model will create this tensor by shifting the input_ids
to the right
for denoising pre-training following the paper.
torch.LongTensor
of shape (batch_size, target_sequence_length)
, optional) —
Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also
be used by default. torch.Tensor
of shape (encoder_layers, encoder_attention_heads)
, optional) —
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in [0, 1]
:
torch.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) —
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in [0, 1]
:
torch.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) —
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in [0, 1]
:
tuple(tuple(torch.FloatTensor)
, optional) —
Tuple consists of (last_hidden_state
, optional: hidden_states
, optional: attentions
)
last_hidden_state
of shape (batch_size, sequence_length, hidden_size)
, optional) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) —
Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape
(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that
don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of all
decoder_input_ids
of shape (batch_size, sequence_length)
.
torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert input_ids
indices into associated vectors
than the model’s internal embedding lookup matrix. torch.FloatTensor
of shape (batch_size, target_sequence_length, hidden_size)
, optional) —
Optionally, instead of passing decoder_input_ids
you can choose to directly pass an embedded
representation. If past_key_values
is used, optionally only the last decoder_inputs_embeds
have to be
input (see past_key_values
). This is useful if you want more control over how to convert
decoder_input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
If decoder_input_ids
and decoder_inputs_embeds
are both unset, decoder_inputs_embeds
takes the value
of inputs_embeds
.
bool
, optional) —
If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see
past_key_values
). bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. torch.LongTensor
of shape (batch_size,)
, optional) —
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence
are not taken into account for computing the loss. torch.LongTensor
of shape (batch_size,)
, optional) —
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence
are not taken into account for computing the loss. Returns
transformers.modeling_outputs.Seq2SeqQuestionAnsweringModelOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.Seq2SeqQuestionAnsweringModelOutput or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (MBartConfig) and inputs.
loss (torch.FloatTensor
of shape (1,)
, optional, returned when labels
is provided) — Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
start_logits (torch.FloatTensor
of shape (batch_size, sequence_length)
) — Span-start scores (before SoftMax).
end_logits (torch.FloatTensor
of shape (batch_size, sequence_length)
) — Span-end scores (before SoftMax).
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape
(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
The MBartForQuestionAnswering forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, MBartForQuestionAnswering
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> model = MBartForQuestionAnswering.from_pretrained("facebook/mbart-large-cc25")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])
>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
( config: MBartConfig **kwargs )
Parameters
MBart model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( input_ids: LongTensor = None attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None head_mask: Optional = None decoder_head_mask: Optional = None cross_attn_head_mask: Optional = None encoder_outputs: Optional = None inputs_embeds: Optional = None decoder_inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.Seq2SeqSequenceClassifierOutput or tuple(torch.FloatTensor)
Parameters
torch.LongTensor
of shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
torch.Tensor
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
torch.LongTensor
of shape (batch_size, target_sequence_length)
, optional) —
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
MBart uses a specific language id token as the starting token for decoder_input_ids
generation that
varies according to source and target language, e.g. 25004 for en_XX, and 25003 for de_DE. If
past_key_values
is used, optionally only the last decoder_input_ids
have to be input (see
past_key_values
).
For translation and summarization training, decoder_input_ids
should be provided. If no
decoder_input_ids
is provided, the model will create this tensor by shifting the input_ids
to the right
for denoising pre-training following the paper.
torch.LongTensor
of shape (batch_size, target_sequence_length)
, optional) —
Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also
be used by default. torch.Tensor
of shape (encoder_layers, encoder_attention_heads)
, optional) —
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in [0, 1]
:
torch.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) —
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in [0, 1]
:
torch.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) —
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in [0, 1]
:
tuple(tuple(torch.FloatTensor)
, optional) —
Tuple consists of (last_hidden_state
, optional: hidden_states
, optional: attentions
)
last_hidden_state
of shape (batch_size, sequence_length, hidden_size)
, optional) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) —
Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape
(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that
don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of all
decoder_input_ids
of shape (batch_size, sequence_length)
.
torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert input_ids
indices into associated vectors
than the model’s internal embedding lookup matrix. torch.FloatTensor
of shape (batch_size, target_sequence_length, hidden_size)
, optional) —
Optionally, instead of passing decoder_input_ids
you can choose to directly pass an embedded
representation. If past_key_values
is used, optionally only the last decoder_inputs_embeds
have to be
input (see past_key_values
). This is useful if you want more control over how to convert
decoder_input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
If decoder_input_ids
and decoder_inputs_embeds
are both unset, decoder_inputs_embeds
takes the value
of inputs_embeds
.
bool
, optional) —
If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see
past_key_values
). bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. torch.LongTensor
of shape (batch_size,)
, optional) —
Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]
. If config.num_labels > 1
a classification loss is computed (Cross-Entropy). Returns
transformers.modeling_outputs.Seq2SeqSequenceClassifierOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.Seq2SeqSequenceClassifierOutput or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (MBartConfig) and inputs.
loss (torch.FloatTensor
of shape (1,)
, optional, returned when label
is provided) — Classification (or regression if config.num_labels==1) loss.
logits (torch.FloatTensor
of shape (batch_size, config.num_labels)
) — Classification (or regression if config.num_labels==1) scores (before SoftMax).
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape
(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
The MBartForSequenceClassification forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example of single-label classification:
>>> import torch
>>> from transformers import AutoTokenizer, MBartForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> model = MBartForSequenceClassification.from_pretrained("facebook/mbart-large-cc25")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = MBartForSequenceClassification.from_pretrained("facebook/mbart-large-cc25", num_labels=num_labels)
>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
Example of multi-label classification:
>>> import torch
>>> from transformers import AutoTokenizer, MBartForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> model = MBartForSequenceClassification.from_pretrained("facebook/mbart-large-cc25", problem_type="multi_label_classification")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = MBartForSequenceClassification.from_pretrained(
... "facebook/mbart-large-cc25", num_labels=num_labels, problem_type="multi_label_classification"
... )
>>> labels = torch.sum(
... torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss
( input_ids: LongTensor = None attention_mask: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None head_mask: Optional = None cross_attn_head_mask: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)
Parameters
torch.LongTensor
of shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
torch.Tensor
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
if the model is configured as a decoder. torch.FloatTensor
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used
in the cross-attention if the model is configured as a decoder. Mask values selected in [0, 1]
: torch.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) —
Mask to nullify selected heads of the attention modules. Mask values selected in [0, 1]
:
torch.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) —
Mask to nullify selected heads of the cross-attention modules. Mask values selected in [0, 1]
:
tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) —
Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of
shape (batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of
shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
. The two additional
tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those
that don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of
all decoder_input_ids
of shape (batch_size, sequence_length)
.
torch.LongTensor
of shape (batch_size, sequence_length)
, optional) —
Labels for computing the masked language modeling loss. Indices should either be in [0, ..., config.vocab_size]
or -100 (see input_ids
docstring). Tokens with indices set to -100
are ignored
(masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size]
. bool
, optional) —
If set to True
, past_key_values
key value states are returned and can be used to speed up decoding
(see past_key_values
).
bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under
returned tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors
for more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. Returns
transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)
A transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (MBartConfig) and inputs.
loss (torch.FloatTensor
of shape (1,)
, optional, returned when labels
is provided) — Language modeling loss (for next-token prediction).
logits (torch.FloatTensor
of shape (batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Cross attentions weights after the attention softmax, used to compute the weighted average in the cross-attention heads.
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of torch.FloatTensor
tuples of length config.n_layers
, with each tuple containing the cached key,
value states of the self-attention and the cross-attention layers if model is used in encoder-decoder
setting. Only relevant if config.is_decoder = True
.
Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
past_key_values
input) to speed up sequential decoding.
Example:
>>> from transformers import AutoTokenizer, MBartForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> model = MBartForCausalLM.from_pretrained("facebook/mbart-large-cc25", add_cross_attention=False)
>>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size]
>>> list(logits.shape) == expected_shape
True
( config: MBartConfig *inputs **kwargs )
Parameters
The bare MBART Model outputting raw hidden-states without any specific head on top. This model inherits from TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
TensorFlow models and layers in transformers
accept two formats as input:
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like model.fit()
things should “just work” for you - just
pass your inputs and labels in any format that model.fit()
supports! If, however, you want to use the second
format outside of Keras methods like fit()
and predict()
, such as when creating your own layers or models with
the Keras Functional
API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
input_ids
only and nothing else: model(input_ids)
model([input_ids, attention_mask])
or model([input_ids, attention_mask, token_type_ids])
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
Note that when creating models and layers with subclassing then you don’t need to worry about any of this, as you can just pass inputs like you would to any other Python function!
( input_ids: TFModelInputType = None attention_mask: tf.Tensor | None = None decoder_input_ids: tf.Tensor | None = None decoder_attention_mask: tf.Tensor | None = None decoder_position_ids: tf.Tensor | None = None head_mask: tf.Tensor | None = None decoder_head_mask: tf.Tensor | None = None cross_attn_head_mask: tf.Tensor | None = None encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None past_key_values: Tuple[Tuple[tf.Tensor]] | None = None inputs_embeds: tf.Tensor | None = None decoder_inputs_embeds: tf.Tensor | None = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: Optional[bool] = False **kwargs ) → transformers.modeling_tf_outputs.TFSeq2SeqModelOutput or tuple(tf.Tensor)
Parameters
tf.Tensor
of shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
tf.Tensor
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
tf.Tensor
of shape (batch_size, target_sequence_length)
, optional) —
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
MBart uses a specific language id token as the starting token for decoder_input_ids
generation that
varies according to source and target language, e.g. 25004 for en_XX, and 25003 for de_DE. If
past_key_values
is used, optionally only the last decoder_input_ids
have to be input (see
past_key_values
).
For translation and summarization training, decoder_input_ids
should be provided. If no
decoder_input_ids
is provided, the model will create this tensor by shifting the input_ids
to the right
for denoising pre-training following the paper.
tf.Tensor
of shape (batch_size, target_sequence_length)
, optional) —
will be made by default and ignore pad tokens. It is not recommended to set this for most use cases. tf.Tensor
of shape (batch_size, sequence_length)
, optional) —
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
range [0, config.max_position_embeddings - 1]
. tf.Tensor
of shape (encoder_layers, encoder_attention_heads)
, optional) —
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in [0, 1]
:
tf.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) —
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in [0, 1]
:
tf.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) —
Mask to nullify selected heads of the cross-attention modules. Mask values selected in [0, 1]
:
tf.FloatTensor
, optional) —
hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
of shape (batch_size, sequence_length, hidden_size)
is a sequence of Tuple[Tuple[tf.Tensor]]
of length config.n_layers
) —
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that
don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of all
decoder_input_ids
of shape (batch_size, sequence_length)
. tf.Tensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert input_ids
indices into associated vectors
than the model’s internal embedding lookup matrix. bool
, optional, defaults to True
) —
If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see
past_key_values
). Set to False
during training, True
during generation bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True. bool
, optional, defaults to False
) —
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation). Returns
transformers.modeling_tf_outputs.TFSeq2SeqModelOutput or tuple(tf.Tensor)
A transformers.modeling_tf_outputs.TFSeq2SeqModelOutput or a tuple of tf.Tensor
(if
return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the
configuration (MBartConfig) and inputs.
last_hidden_state (tf.Tensor
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the decoder of the model.
If past_key_values
is used only the last hidden-state of the sequences of shape (batch_size, 1, hidden_size)
is output.
past_key_values (List[tf.Tensor]
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — List of tf.Tensor
of length config.n_layers
, with each tensor of shape (2, batch_size, num_heads, sequence_length, embed_size_per_head)
).
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(tf.Tensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of tf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape
(batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (tf.Tensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(tf.Tensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of tf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape
(batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
The TFMBartModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, TFMBartModel
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> model = TFMBartModel.from_pretrained("facebook/mbart-large-cc25")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
>>> last_hidden_states = outputs.last_hidden_state
( config *inputs **kwargs )
Parameters
The MBART Model with a language modeling head. Can be used for summarization, after fine-tuning the pretrained models. This model inherits from TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
TensorFlow models and layers in transformers
accept two formats as input:
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like model.fit()
things should “just work” for you - just
pass your inputs and labels in any format that model.fit()
supports! If, however, you want to use the second
format outside of Keras methods like fit()
and predict()
, such as when creating your own layers or models with
the Keras Functional
API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
input_ids
only and nothing else: model(input_ids)
model([input_ids, attention_mask])
or model([input_ids, attention_mask, token_type_ids])
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
Note that when creating models and layers with subclassing then you don’t need to worry about any of this, as you can just pass inputs like you would to any other Python function!
( input_ids: TFModelInputType = None attention_mask: tf.Tensor | None = None decoder_input_ids: tf.Tensor | None = None decoder_attention_mask: tf.Tensor | None = None decoder_position_ids: tf.Tensor | None = None head_mask: tf.Tensor | None = None decoder_head_mask: tf.Tensor | None = None cross_attn_head_mask: tf.Tensor | None = None encoder_outputs: Optional[TFBaseModelOutput] = None past_key_values: Tuple[Tuple[tf.Tensor]] = None inputs_embeds: tf.Tensor | None = None decoder_inputs_embeds: tf.Tensor | None = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None labels: tf.Tensor | None = None training: Optional[bool] = False ) → transformers.modeling_tf_outputs.TFSeq2SeqLMOutput or tuple(tf.Tensor)
Parameters
tf.Tensor
of shape ({0})
) —
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
tf.Tensor
of shape ({0})
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
tf.Tensor
of shape (batch_size, target_sequence_length)
, optional) —
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
MBart uses a specific language id token as the starting token for decoder_input_ids
generation that
varies according to source and target language, e.g. 25004 for en_XX, and 25003 for de_DE. If
past_key_values
is used, optionally only the last decoder_input_ids
have to be input (see
past_key_values
).
For translation and summarization training, decoder_input_ids
should be provided. If no
decoder_input_ids
is provided, the model will create this tensor by shifting the input_ids
to the right
for denoising pre-training following the paper.
tf.Tensor
of shape (batch_size, target_sequence_length)
, optional) —
will be made by default and ignore pad tokens. It is not recommended to set this for most use cases. tf.Tensor
of shape (batch_size, sequence_length)
, optional) —
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
range [0, config.max_position_embeddings - 1]
. tf.Tensor
of shape (encoder_layers, encoder_attention_heads)
, optional) —
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in [0, 1]
:
tf.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) —
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in [0, 1]
:
tf.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) —
Mask to nullify selected heads of the cross-attention modules. Mask values selected in [0, 1]
:
tf.FloatTensor
, optional) —
hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
of shape (batch_size, sequence_length, hidden_size)
is a sequence of Tuple[Tuple[tf.Tensor]]
of length config.n_layers
) —
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that
don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of all
decoder_input_ids
of shape (batch_size, sequence_length)
. tf.Tensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert input_ids
indices into associated vectors
than the model’s internal embedding lookup matrix. bool
, optional, defaults to True
) —
If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see
past_key_values
). Set to False
during training, True
during generation bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True. bool
, optional, defaults to False
) —
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation). tf.Tensor
of shape (batch_size, sequence_length)
, optional) —
Labels for computing the masked language modeling loss. Indices should either be in [0, ..., config.vocab_size]
or -100 (see input_ids
docstring). Tokens with indices set to -100
are ignored
(masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size]
. Returns
transformers.modeling_tf_outputs.TFSeq2SeqLMOutput or tuple(tf.Tensor)
A transformers.modeling_tf_outputs.TFSeq2SeqLMOutput or a tuple of tf.Tensor
(if
return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the
configuration (MBartConfig) and inputs.
loss (tf.Tensor
of shape (n,)
, optional, where n is the number of non-masked labels, returned when labels
is provided) — Language modeling loss.
logits (tf.Tensor
of shape (batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (List[tf.Tensor]
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — List of tf.Tensor
of length config.n_layers
, with each tensor of shape (2, batch_size, num_heads, sequence_length, embed_size_per_head)
).
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(tf.Tensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of tf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape
(batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (tf.Tensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(tf.Tensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of tf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape
(batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
The TFMBartForConditionalGeneration forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Translation example:
>>> from transformers import AutoTokenizer, TFMBartForConditionalGeneration
>>> model = TFMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-en-ro")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-en-ro")
>>> example_english_phrase = "42 is the answer"
>>> inputs = tokenizer(example_english_phrase, return_tensors="tf")
>>> # Translate
>>> generated_ids = model.generate(**inputs, num_beams=4, max_length=5)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
'42 este răspuns'
Mask filling example:
>>> from transformers import AutoTokenizer, TFMBartForConditionalGeneration
>>> import tensorflow as tf
>>> model = TFMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> # de_DE is the language symbol id <LID> for German
>>> TXT = "</s> Meine Freunde sind <mask> nett aber sie essen zu viel Kuchen. </s> de_DE"
>>> input_ids = tokenizer([TXT], add_special_tokens=False, return_tensors="tf")["input_ids"]
>>> logits = model(input_ids).logits
>>> masked_index = tf.where(input_ids[0] == tokenizer.mask_token_id)[0, 0]
>>> probs = tf.nn.softmax(logits[0, masked_index], axis=0)
>>> values, predictions = tf.math.top_k(probs, 5)
>>> tokenizer.decode(predictions).split()
['nett', 'sehr', 'ganz', 'nicht', 'so']
( config: MBartConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
Parameters
jax.numpy.dtype
, optional, defaults to jax.numpy.float32
) —
The data type of the computation. Can be one of jax.numpy.float32
, jax.numpy.float16
(on GPUs) and
jax.numpy.bfloat16
(on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
specified all the computation will be performed with the given dtype
.
Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.
If you wish to change the dtype of the model parameters, see to_fp16() and to_bf16().
The bare MBart Model transformer outputting raw hidden-states without any specific head on top. This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a Flax Linen flax.nn.Module subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
( input_ids: Array attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None position_ids: Optional = None decoder_position_ids: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → transformers.modeling_flax_outputs.FlaxSeq2SeqModelOutput or tuple(torch.FloatTensor)
Parameters
jnp.ndarray
of shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
jnp.ndarray
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
jnp.ndarray
of shape (batch_size, target_sequence_length)
, optional) —
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
For translation and summarization training, decoder_input_ids
should be provided. If no
decoder_input_ids
is provided, the model will create this tensor by shifting the input_ids
to the right
for denoising pre-training following the paper.
jnp.ndarray
of shape (batch_size, target_sequence_length)
, optional) —
Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also
be used by default.
If you want to change padding behavior, you should modify to your needs. See diagram 1 in the paper for more information on the default strategy.
numpy.ndarray
of shape (batch_size, sequence_length)
, optional) —
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
. numpy.ndarray
of shape (batch_size, sequence_length)
, optional) —
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
range [0, config.max_position_embeddings - 1]
. bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. Returns
transformers.modeling_flax_outputs.FlaxSeq2SeqModelOutput or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxSeq2SeqModelOutput or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (MBartConfig) and inputs.
last_hidden_state (jnp.ndarray
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the decoder of the model.
If past_key_values
is used only the last hidden-state of the sequences of shape (batch_size, 1, hidden_size)
is output.
past_key_values (tuple(tuple(jnp.ndarray))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(jnp.ndarray)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape
(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape
(batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (jnp.ndarray
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape
(batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
The FlaxMBartPreTrainedModel
forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, FlaxMBartModel
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> model = FlaxMBartModel.from_pretrained("facebook/mbart-large-cc25")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
( input_ids: Array attention_mask: Optional = None position_ids: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → transformers.modeling_flax_outputs.FlaxBaseModelOutput or tuple(torch.FloatTensor)
Parameters
jnp.ndarray
of shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
jnp.ndarray
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
numpy.ndarray
of shape (batch_size, sequence_length)
, optional) —
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
. bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. Returns
transformers.modeling_flax_outputs.FlaxBaseModelOutput or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxBaseModelOutput or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (<class 'transformers.models.mbart.configuration_mbart.MBartConfig'>
) and inputs.
last_hidden_state (jnp.ndarray
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model.
hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape
(batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Example:
>>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration
>>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)
( decoder_input_ids encoder_outputs encoder_attention_mask: Optional = None decoder_attention_mask: Optional = None decoder_position_ids: Optional = None past_key_values: dict = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions or tuple(torch.FloatTensor)
Parameters
jnp.ndarray
of shape (batch_size, target_sequence_length)
) —
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
For translation and summarization training, decoder_input_ids
should be provided. If no
decoder_input_ids
is provided, the model will create this tensor by shifting the input_ids
to the right
for denoising pre-training following the paper.
tuple(tuple(jnp.ndarray)
) —
Tuple consists of (last_hidden_state
, optional: hidden_states
, optional: attentions
)
last_hidden_state
of shape (batch_size, sequence_length, hidden_size)
, optional) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. jnp.ndarray
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
jnp.ndarray
of shape (batch_size, target_sequence_length)
, optional) —
Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also
be used by default.
If you want to change padding behavior, you should modify to your needs. See diagram 1 in the paper for more information on the default strategy.
numpy.ndarray
of shape (batch_size, sequence_length)
, optional) —
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
range [0, config.max_position_embeddings - 1]
. Dict[str, np.ndarray]
, optional, returned by init_cache
or when passing previous past_key_values
) —
Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
auto-regressive decoding. Pre-computed key and value hidden-states are of shape [batch_size, max_length]. bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. Returns
transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (<class 'transformers.models.mbart.configuration_mbart.MBartConfig'>
) and inputs.
last_hidden_state (jnp.ndarray
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model.
If past_key_values
is used only the last hidden-state of the sequences of shape (batch_size, 1, hidden_size)
is output.
past_key_values (tuple(tuple(jnp.ndarray))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(jnp.ndarray)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and optionally if
config.is_encoder_decoder=True
2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
config.is_encoder_decoder=True
in the cross-attention blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape
(batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
and config.add_cross_attention=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
Example:
>>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration
>>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)
>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> last_decoder_hidden_states = outputs.last_hidden_state
( config: MBartConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
Parameters
jax.numpy.dtype
, optional, defaults to jax.numpy.float32
) —
The data type of the computation. Can be one of jax.numpy.float32
, jax.numpy.float16
(on GPUs) and
jax.numpy.bfloat16
(on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
specified all the computation will be performed with the given dtype
.
Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.
If you wish to change the dtype of the model parameters, see to_fp16() and to_bf16().
The MMBart Model with a language modeling head. Can be used for summarization. This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a Flax Linen flax.nn.Module subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
( input_ids: Array attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None position_ids: Optional = None decoder_position_ids: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutput or tuple(torch.FloatTensor)
Parameters
jnp.ndarray
of shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
jnp.ndarray
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
jnp.ndarray
of shape (batch_size, target_sequence_length)
, optional) —
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
For translation and summarization training, decoder_input_ids
should be provided. If no
decoder_input_ids
is provided, the model will create this tensor by shifting the input_ids
to the right
for denoising pre-training following the paper.
jnp.ndarray
of shape (batch_size, target_sequence_length)
, optional) —
Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also
be used by default.
If you want to change padding behavior, you should modify to your needs. See diagram 1 in the paper for more information on the default strategy.
numpy.ndarray
of shape (batch_size, sequence_length)
, optional) —
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
. numpy.ndarray
of shape (batch_size, sequence_length)
, optional) —
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
range [0, config.max_position_embeddings - 1]
. bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. Returns
transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutput or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutput or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (MBartConfig) and inputs.
logits (jnp.ndarray
of shape (batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (tuple(tuple(jnp.ndarray))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(jnp.ndarray)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape
(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape
(batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (jnp.ndarray
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape
(batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
The FlaxMBartPreTrainedModel
forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Summarization example:
>>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration, MBartConfig
>>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> ARTICLE_TO_SUMMARIZE = "Meine Freunde sind cool, aber sie essen zu viel Kuchen."
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors="np")
>>> # Generate Summary
>>> summary_ids = model.generate(inputs["input_ids"], num_beams=4, max_length=5).sequences
>>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False))
Mask filling example:
>>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration
>>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> # de_DE is the language symbol id <LID> for German
>>> TXT = "</s> Meine Freunde sind <mask> nett aber sie essen zu viel Kuchen. </s> de_DE"
>>> input_ids = tokenizer([TXT], add_special_tokens=False, return_tensors="np")["input_ids"]
>>> logits = model(input_ids).logits
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero()[0].item()
>>> probs = logits[0, masked_index].softmax(dim=0)
>>> values, predictions = probs.topk(5)
>>> tokenizer.decode(predictions).split()
( input_ids: Array attention_mask: Optional = None position_ids: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → transformers.modeling_flax_outputs.FlaxBaseModelOutput or tuple(torch.FloatTensor)
Parameters
jnp.ndarray
of shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
jnp.ndarray
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
numpy.ndarray
of shape (batch_size, sequence_length)
, optional) —
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
. bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. Returns
transformers.modeling_flax_outputs.FlaxBaseModelOutput or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxBaseModelOutput or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (<class 'transformers.models.mbart.configuration_mbart.MBartConfig'>
) and inputs.
last_hidden_state (jnp.ndarray
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model.
hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape
(batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Example:
>>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration
>>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)
( decoder_input_ids encoder_outputs encoder_attention_mask: Optional = None decoder_attention_mask: Optional = None decoder_position_ids: Optional = None past_key_values: dict = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)
Parameters
jnp.ndarray
of shape (batch_size, target_sequence_length)
) —
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
For translation and summarization training, decoder_input_ids
should be provided. If no
decoder_input_ids
is provided, the model will create this tensor by shifting the input_ids
to the right
for denoising pre-training following the paper.
tuple(tuple(jnp.ndarray)
) —
Tuple consists of (last_hidden_state
, optional: hidden_states
, optional: attentions
)
last_hidden_state
of shape (batch_size, sequence_length, hidden_size)
, optional) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. jnp.ndarray
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
jnp.ndarray
of shape (batch_size, target_sequence_length)
, optional) —
Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also
be used by default.
If you want to change padding behavior, you should modify to your needs. See diagram 1 in the paper for more information on the default strategy.
numpy.ndarray
of shape (batch_size, sequence_length)
, optional) —
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
range [0, config.max_position_embeddings - 1]
. Dict[str, np.ndarray]
, optional, returned by init_cache
or when passing previous past_key_values
) —
Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
auto-regressive decoding. Pre-computed key and value hidden-states are of shape [batch_size, max_length]. bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. Returns
transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxCausalLMOutputWithCrossAttentions or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (<class 'transformers.models.mbart.configuration_mbart.MBartConfig'>
) and inputs.
logits (jnp.ndarray
of shape (batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape
(batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Cross attentions weights after the attention softmax, used to compute the weighted average in the cross-attention heads.
past_key_values (tuple(tuple(jnp.ndarray))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of jnp.ndarray
tuples of length config.n_layers
, with each tuple containing the cached key, value
states of the self-attention and the cross-attention layers if model is used in encoder-decoder setting.
Only relevant if config.is_decoder = True
.
Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
past_key_values
input) to speed up sequential decoding.
Example:
>>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration
>>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)
>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> logits = outputs.logits
( config: MBartConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
Parameters
jax.numpy.dtype
, optional, defaults to jax.numpy.float32
) —
The data type of the computation. Can be one of jax.numpy.float32
, jax.numpy.float16
(on GPUs) and
jax.numpy.bfloat16
(on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
specified all the computation will be performed with the given dtype
.
Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.
If you wish to change the dtype of the model parameters, see to_fp16() and to_bf16().
MBart model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.
This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a Flax Linen flax.nn.Module subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
( input_ids: Array attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None position_ids: Optional = None decoder_position_ids: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → transformers.modeling_flax_outputs.FlaxSeq2SeqSequenceClassifierOutput or tuple(torch.FloatTensor)
Parameters
jnp.ndarray
of shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
jnp.ndarray
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
jnp.ndarray
of shape (batch_size, target_sequence_length)
, optional) —
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
For translation and summarization training, decoder_input_ids
should be provided. If no
decoder_input_ids
is provided, the model will create this tensor by shifting the input_ids
to the right
for denoising pre-training following the paper.
jnp.ndarray
of shape (batch_size, target_sequence_length)
, optional) —
Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also
be used by default.
If you want to change padding behavior, you should modify to your needs. See diagram 1 in the paper for more information on the default strategy.
numpy.ndarray
of shape (batch_size, sequence_length)
, optional) —
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
. numpy.ndarray
of shape (batch_size, sequence_length)
, optional) —
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
range [0, config.max_position_embeddings - 1]
. bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. Returns
transformers.modeling_flax_outputs.FlaxSeq2SeqSequenceClassifierOutput or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxSeq2SeqSequenceClassifierOutput or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (MBartConfig) and inputs.
logits (jnp.ndarray
of shape (batch_size, config.num_labels)
) — Classification (or regression if config.num_labels==1) scores (before SoftMax).
past_key_values (tuple(tuple(jnp.ndarray))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(jnp.ndarray)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape
(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape
(batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (jnp.ndarray
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape
(batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
The FlaxMBartPreTrainedModel
forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, FlaxMBartForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> model = FlaxMBartForSequenceClassification.from_pretrained("facebook/mbart-large-cc25")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
( input_ids: Array attention_mask: Optional = None position_ids: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → transformers.modeling_flax_outputs.FlaxBaseModelOutput or tuple(torch.FloatTensor)
Parameters
jnp.ndarray
of shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
jnp.ndarray
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
numpy.ndarray
of shape (batch_size, sequence_length)
, optional) —
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
. bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. Returns
transformers.modeling_flax_outputs.FlaxBaseModelOutput or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxBaseModelOutput or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (<class 'transformers.models.mbart.configuration_mbart.MBartConfig'>
) and inputs.
last_hidden_state (jnp.ndarray
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model.
hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape
(batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Example:
>>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration
>>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)
( decoder_input_ids encoder_outputs encoder_attention_mask: Optional = None decoder_attention_mask: Optional = None decoder_position_ids: Optional = None past_key_values: dict = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions or tuple(torch.FloatTensor)
Parameters
jnp.ndarray
of shape (batch_size, target_sequence_length)
) —
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
For translation and summarization training, decoder_input_ids
should be provided. If no
decoder_input_ids
is provided, the model will create this tensor by shifting the input_ids
to the right
for denoising pre-training following the paper.
tuple(tuple(jnp.ndarray)
) —
Tuple consists of (last_hidden_state
, optional: hidden_states
, optional: attentions
)
last_hidden_state
of shape (batch_size, sequence_length, hidden_size)
, optional) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. jnp.ndarray
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
jnp.ndarray
of shape (batch_size, target_sequence_length)
, optional) —
Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also
be used by default.
If you want to change padding behavior, you should modify to your needs. See diagram 1 in the paper for more information on the default strategy.
numpy.ndarray
of shape (batch_size, sequence_length)
, optional) —
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
range [0, config.max_position_embeddings - 1]
. Dict[str, np.ndarray]
, optional, returned by init_cache
or when passing previous past_key_values
) —
Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
auto-regressive decoding. Pre-computed key and value hidden-states are of shape [batch_size, max_length]. bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. Returns
transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (<class 'transformers.models.mbart.configuration_mbart.MBartConfig'>
) and inputs.
last_hidden_state (jnp.ndarray
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model.
If past_key_values
is used only the last hidden-state of the sequences of shape (batch_size, 1, hidden_size)
is output.
past_key_values (tuple(tuple(jnp.ndarray))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(jnp.ndarray)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and optionally if
config.is_encoder_decoder=True
2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
config.is_encoder_decoder=True
in the cross-attention blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape
(batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
and config.add_cross_attention=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
Example:
>>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration
>>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)
>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> last_decoder_hidden_states = outputs.last_hidden_state
( config: MBartConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
Parameters
jax.numpy.dtype
, optional, defaults to jax.numpy.float32
) —
The data type of the computation. Can be one of jax.numpy.float32
, jax.numpy.float16
(on GPUs) and
jax.numpy.bfloat16
(on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
specified all the computation will be performed with the given dtype
.
Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.
If you wish to change the dtype of the model parameters, see to_fp16() and to_bf16().
MBart Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layer on top of the hidden-states output to compute span start logits
and span end logits
).
This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a Flax Linen flax.nn.Module subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
( input_ids: Array attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None position_ids: Optional = None decoder_position_ids: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → transformers.modeling_flax_outputs.FlaxSeq2SeqQuestionAnsweringModelOutput or tuple(torch.FloatTensor)
Parameters
jnp.ndarray
of shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
jnp.ndarray
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
jnp.ndarray
of shape (batch_size, target_sequence_length)
, optional) —
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
For translation and summarization training, decoder_input_ids
should be provided. If no
decoder_input_ids
is provided, the model will create this tensor by shifting the input_ids
to the right
for denoising pre-training following the paper.
jnp.ndarray
of shape (batch_size, target_sequence_length)
, optional) —
Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also
be used by default.
If you want to change padding behavior, you should modify to your needs. See diagram 1 in the paper for more information on the default strategy.
numpy.ndarray
of shape (batch_size, sequence_length)
, optional) —
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
. numpy.ndarray
of shape (batch_size, sequence_length)
, optional) —
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
range [0, config.max_position_embeddings - 1]
. bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. Returns
transformers.modeling_flax_outputs.FlaxSeq2SeqQuestionAnsweringModelOutput or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxSeq2SeqQuestionAnsweringModelOutput or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (MBartConfig) and inputs.
start_logits (jnp.ndarray
of shape (batch_size, sequence_length)
) — Span-start scores (before SoftMax).
end_logits (jnp.ndarray
of shape (batch_size, sequence_length)
) — Span-end scores (before SoftMax).
past_key_values (tuple(tuple(jnp.ndarray))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(jnp.ndarray)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape
(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape
(batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (jnp.ndarray
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape
(batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
The FlaxMBartPreTrainedModel
forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, FlaxMBartForQuestionAnswering
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> model = FlaxMBartForQuestionAnswering.from_pretrained("facebook/mbart-large-cc25")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="jax")
>>> outputs = model(**inputs)
>>> start_scores = outputs.start_logits
>>> end_scores = outputs.end_logits
( input_ids: Array attention_mask: Optional = None position_ids: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → transformers.modeling_flax_outputs.FlaxBaseModelOutput or tuple(torch.FloatTensor)
Parameters
jnp.ndarray
of shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
jnp.ndarray
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
numpy.ndarray
of shape (batch_size, sequence_length)
, optional) —
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
. bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. Returns
transformers.modeling_flax_outputs.FlaxBaseModelOutput or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxBaseModelOutput or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (<class 'transformers.models.mbart.configuration_mbart.MBartConfig'>
) and inputs.
last_hidden_state (jnp.ndarray
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model.
hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape
(batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
Example:
>>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration
>>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)
( decoder_input_ids encoder_outputs encoder_attention_mask: Optional = None decoder_attention_mask: Optional = None decoder_position_ids: Optional = None past_key_values: dict = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions or tuple(torch.FloatTensor)
Parameters
jnp.ndarray
of shape (batch_size, target_sequence_length)
) —
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
For translation and summarization training, decoder_input_ids
should be provided. If no
decoder_input_ids
is provided, the model will create this tensor by shifting the input_ids
to the right
for denoising pre-training following the paper.
tuple(tuple(jnp.ndarray)
) —
Tuple consists of (last_hidden_state
, optional: hidden_states
, optional: attentions
)
last_hidden_state
of shape (batch_size, sequence_length, hidden_size)
, optional) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. jnp.ndarray
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
jnp.ndarray
of shape (batch_size, target_sequence_length)
, optional) —
Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also
be used by default.
If you want to change padding behavior, you should modify to your needs. See diagram 1 in the paper for more information on the default strategy.
numpy.ndarray
of shape (batch_size, sequence_length)
, optional) —
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
range [0, config.max_position_embeddings - 1]
. Dict[str, np.ndarray]
, optional, returned by init_cache
or when passing previous past_key_values
) —
Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
auto-regressive decoding. Pre-computed key and value hidden-states are of shape [batch_size, max_length]. bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. Returns
transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxBaseModelOutputWithPastAndCrossAttentions or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (<class 'transformers.models.mbart.configuration_mbart.MBartConfig'>
) and inputs.
last_hidden_state (jnp.ndarray
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model.
If past_key_values
is used only the last hidden-state of the sequences of shape (batch_size, 1, hidden_size)
is output.
past_key_values (tuple(tuple(jnp.ndarray))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(jnp.ndarray)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and optionally if
config.is_encoder_decoder=True
2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
config.is_encoder_decoder=True
in the cross-attention blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape
(batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
and config.add_cross_attention=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
Example:
>>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration
>>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, max_length=1024, return_tensors="jax")
>>> encoder_outputs = model.encode(**inputs)
>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> last_decoder_hidden_states = outputs.last_hidden_state