A framework for translation models, using the same models as BART. Translations should be similar, but not identical to output in the test set linked to in each model card. This model was contributed by sshleifer.
Each model is about 298 MB on disk, there are more than 1,000 models.
The list of supported language pairs can be found here.
Models were originally trained by Jörg Tiedemann using the Marian C++ library, which supports fast training and translation.
All models are transformer encoder-decoders with 6 layers in each component. Each model’s performance is documented in a model card.
The 80 opus models that require BPE preprocessing are not supported.
The modeling code is the same as BartForConditionalGeneration with a few minor modifications:
MarianConfig.static_position_embeddings=True
)MarianConfig.normalize_embedding=False
)pad_token_id
(which has 0 as a token_embedding) as the prefix (Bart uses
<s/>
),Code to bulk convert models can be found in convert_marian_to_pytorch.py
.
Helsinki-NLP/opus-mt-{src}-{tgt}
es_AR
are usually code_{region}
. That one is Spanish from Argentina.Helsinki-NLP/opus-mt-{src}-{tgt}
:src_text
.Helsinki-NLP/opus-mt-roa-en
, no language
codes are required.New multi-lingual models from the Tatoeba-Challenge repo require 3 character language codes:
>>> from transformers import MarianMTModel, MarianTokenizer
>>> src_text = [
... ">>fra<< this is a sentence in english that we want to translate to french",
... ">>por<< This should go to portuguese",
... ">>esp<< And this to Spanish",
... ]
>>> model_name = "Helsinki-NLP/opus-mt-en-roa"
>>> tokenizer = MarianTokenizer.from_pretrained(model_name)
>>> print(tokenizer.supported_language_codes)
['>>zlm_Latn<<', '>>mfe<<', '>>hat<<', '>>pap<<', '>>ast<<', '>>cat<<', '>>ind<<', '>>glg<<', '>>wln<<', '>>spa<<', '>>fra<<', '>>ron<<', '>>por<<', '>>ita<<', '>>oci<<', '>>arg<<', '>>min<<']
>>> model = MarianMTModel.from_pretrained(model_name)
>>> translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
>>> [tokenizer.decode(t, skip_special_tokens=True) for t in translated]
["c'est une phrase en anglais que nous voulons traduire en français",
'Isto deve ir para o português.',
'Y esto al español']
Here is the code to see all available pretrained models on the hub:
from huggingface_hub import list_models
model_list = list_models()
org = "Helsinki-NLP"
model_ids = [x.modelId for x in model_list if x.modelId.startswith(org)]
suffix = [x.split("/")[1] for x in model_ids]
old_style_multi_models = [f"{org}/{s}" for s in suffix if s != s.lower()]
These are the old style multi-lingual models ported from the OPUS-MT-Train repo: and the members of each language group:
['Helsinki-NLP/opus-mt-NORTH_EU-NORTH_EU',
'Helsinki-NLP/opus-mt-ROMANCE-en',
'Helsinki-NLP/opus-mt-SCANDINAVIA-SCANDINAVIA',
'Helsinki-NLP/opus-mt-de-ZH',
'Helsinki-NLP/opus-mt-en-CELTIC',
'Helsinki-NLP/opus-mt-en-ROMANCE',
'Helsinki-NLP/opus-mt-es-NORWAY',
'Helsinki-NLP/opus-mt-fi-NORWAY',
'Helsinki-NLP/opus-mt-fi-ZH',
'Helsinki-NLP/opus-mt-fi_nb_no_nn_ru_sv_en-SAMI',
'Helsinki-NLP/opus-mt-sv-NORWAY',
'Helsinki-NLP/opus-mt-sv-ZH']
GROUP_MEMBERS = {
'ZH': ['cmn', 'cn', 'yue', 'ze_zh', 'zh_cn', 'zh_CN', 'zh_HK', 'zh_tw', 'zh_TW', 'zh_yue', 'zhs', 'zht', 'zh'],
'ROMANCE': ['fr', 'fr_BE', 'fr_CA', 'fr_FR', 'wa', 'frp', 'oc', 'ca', 'rm', 'lld', 'fur', 'lij', 'lmo', 'es', 'es_AR', 'es_CL', 'es_CO', 'es_CR', 'es_DO', 'es_EC', 'es_ES', 'es_GT', 'es_HN', 'es_MX', 'es_NI', 'es_PA', 'es_PE', 'es_PR', 'es_SV', 'es_UY', 'es_VE', 'pt', 'pt_br', 'pt_BR', 'pt_PT', 'gl', 'lad', 'an', 'mwl', 'it', 'it_IT', 'co', 'nap', 'scn', 'vec', 'sc', 'ro', 'la'],
'NORTH_EU': ['de', 'nl', 'fy', 'af', 'da', 'fo', 'is', 'no', 'nb', 'nn', 'sv'],
'SCANDINAVIA': ['da', 'fo', 'is', 'no', 'nb', 'nn', 'sv'],
'SAMI': ['se', 'sma', 'smj', 'smn', 'sms'],
'NORWAY': ['nb_NO', 'nb', 'nn_NO', 'nn', 'nog', 'no_nb', 'no'],
'CELTIC': ['ga', 'cy', 'br', 'gd', 'kw', 'gv']
}
Example of translating english to many romance languages, using old-style 2 character language codes
>>> from transformers import MarianMTModel, MarianTokenizer
>>> src_text = [
... ">>fr<< this is a sentence in english that we want to translate to french",
... ">>pt<< This should go to portuguese",
... ">>es<< And this to Spanish",
... ]
>>> model_name = "Helsinki-NLP/opus-mt-en-ROMANCE"
>>> tokenizer = MarianTokenizer.from_pretrained(model_name)
>>> model = MarianMTModel.from_pretrained(model_name)
>>> translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
>>> tgt_text = [tokenizer.decode(t, skip_special_tokens=True) for t in translated]
["c'est une phrase en anglais que nous voulons traduire en français",
'Isto deve ir para o português.',
'Y esto al español']
( vocab_size = 58101 decoder_vocab_size = None max_position_embeddings = 1024 encoder_layers = 12 encoder_ffn_dim = 4096 encoder_attention_heads = 16 decoder_layers = 12 decoder_ffn_dim = 4096 decoder_attention_heads = 16 encoder_layerdrop = 0.0 decoder_layerdrop = 0.0 use_cache = True is_encoder_decoder = True activation_function = 'gelu' d_model = 1024 dropout = 0.1 attention_dropout = 0.0 activation_dropout = 0.0 init_std = 0.02 decoder_start_token_id = 58100 scale_embedding = False pad_token_id = 58100 eos_token_id = 0 forced_eos_token_id = 0 share_encoder_decoder_embeddings = True **kwargs )
Parameters
int
, optional, defaults to 58101) —
Vocabulary size of the Marian model. Defines the number of different tokens that can be represented by the
inputs_ids
passed when calling MarianModel or TFMarianModel. int
, optional, defaults to 1024) —
Dimensionality of the layers and the pooler layer. int
, optional, defaults to 12) —
Number of encoder layers. int
, optional, defaults to 12) —
Number of decoder layers. int
, optional, defaults to 16) —
Number of attention heads for each attention layer in the Transformer encoder. int
, optional, defaults to 16) —
Number of attention heads for each attention layer in the Transformer decoder. int
, optional, defaults to 4096) —
Dimensionality of the “intermediate” (often named feed-forward) layer in decoder. int
, optional, defaults to 4096) —
Dimensionality of the “intermediate” (often named feed-forward) layer in decoder. str
or function
, optional, defaults to "gelu"
) —
The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu"
,
"relu"
, "silu"
and "gelu_new"
are supported. float
, optional, defaults to 0.1) —
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. float
, optional, defaults to 0.0) —
The dropout ratio for the attention probabilities. float
, optional, defaults to 0.0) —
The dropout ratio for activations inside the fully connected layer. int
, optional, defaults to 1024) —
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048). float
, optional, defaults to 0.02) —
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. float
, optional, defaults to 0.0) —
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details. float
, optional, defaults to 0.0) —
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details. bool
, optional, defaults to False
) —
Scale embeddings by diving by sqrt(d_model). bool
, optional, defaults to True
) —
Whether or not the model should return the last key/values attentions (not used by all models) int
, optional, defaults to 0) —
The id of the token to force as the last generated token when max_length
is reached. Usually set to
eos_token_id
. This is the configuration class to store the configuration of a MarianModel. It is used to instantiate an Marian model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Marian Helsinki-NLP/opus-mt-en-de architecture.
Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.
Examples:
>>> from transformers import MarianModel, MarianConfig
>>> # Initializing a Marian Helsinki-NLP/opus-mt-en-de style configuration
>>> configuration = MarianConfig()
>>> # Initializing a model from the Helsinki-NLP/opus-mt-en-de style configuration
>>> model = MarianModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
( source_spm target_spm vocab target_vocab_file = None source_lang = None target_lang = None unk_token = '<unk>' eos_token = '</s>' pad_token = '<pad>' model_max_length = 512 sp_model_kwargs: Optional = None separate_vocabs = False **kwargs )
Parameters
str
) —
SentencePiece file (generally has a .spm extension) that
contains the vocabulary for the source language. str
) —
SentencePiece file (generally has a .spm extension) that
contains the vocabulary for the target language. str
, optional) —
A string representing the source language. str
, optional) —
A string representing the target language. str
, optional, defaults to "<unk>"
) —
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead. str
, optional, defaults to "</s>"
) —
The end of sequence token. str
, optional, defaults to "<pad>"
) —
The token used for padding, for example when batching sequences of different lengths. int
, optional, defaults to 512) —
The maximum sentence length the model accepts. List[str]
, optional, defaults to ["<eop>", "<eod>"]
) —
Additional special tokens used by the tokenizer. dict
, optional) —
Will be passed to the SentencePieceProcessor.__init__()
method. The Python wrapper for
SentencePiece can be used, among other things,
to set:
enable_sampling
: Enable subword regularization.
nbest_size
: Sampling parameters for unigram. Invalid for BPE-Dropout.
nbest_size = {0,1}
: No sampling is performed.nbest_size > 1
: samples from the nbest_size results.nbest_size < 0
: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
using forward-filtering-and-backward-sampling algorithm.alpha
: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
BPE-dropout.
Construct a Marian tokenizer. Based on SentencePiece.
This tokenizer inherits from PreTrainedTokenizer which contains most of the main methods. Users should refer to this superclass for more information regarding those methods.
Examples:
>>> from transformers import MarianForCausalLM, MarianTokenizer
>>> model = MarianForCausalLM.from_pretrained("Helsinki-NLP/opus-mt-en-de")
>>> tokenizer = MarianTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de")
>>> src_texts = ["I am a small frog.", "Tom asked his teacher for advice."]
>>> tgt_texts = ["Ich bin ein kleiner Frosch.", "Tom bat seinen Lehrer um Rat."] # optional
>>> inputs = tokenizer(src_texts, text_target=tgt_texts, return_tensors="pt", padding=True)
>>> outputs = model(**inputs) # should work
Build model inputs from a sequence by appending eos_token_id.
( config: MarianConfig )
Parameters
The bare Marian Model outputting raw hidden-states without any specific head on top. This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( input_ids: LongTensor = None attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None head_mask: Optional = None decoder_head_mask: Optional = None cross_attn_head_mask: Optional = None encoder_outputs: Union = None past_key_values: Optional = None inputs_embeds: Optional = None decoder_inputs_embeds: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.Seq2SeqModelOutput or tuple(torch.FloatTensor)
Parameters
torch.LongTensor
of shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
torch.Tensor
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
torch.LongTensor
of shape (batch_size, target_sequence_length)
, optional) —
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
Marian uses the pad_token_id
as the starting token for decoder_input_ids
generation. If
past_key_values
is used, optionally only the last decoder_input_ids
have to be input (see
past_key_values
).
torch.LongTensor
of shape (batch_size, target_sequence_length)
, optional) —
Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also
be used by default. torch.Tensor
of shape (encoder_layers, encoder_attention_heads)
, optional) —
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in [0, 1]
:
torch.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) —
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in [0, 1]
:
torch.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) —
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in [0, 1]
:
tuple(tuple(torch.FloatTensor)
, optional) —
Tuple consists of (last_hidden_state
, optional: hidden_states
, optional: attentions
)
last_hidden_state
of shape (batch_size, sequence_length, hidden_size)
, optional) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) —
Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape
(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that
don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of all
decoder_input_ids
of shape (batch_size, sequence_length)
.
torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert input_ids
indices into associated vectors than the
model’s internal embedding lookup matrix. torch.FloatTensor
of shape (batch_size, target_sequence_length, hidden_size)
, optional) —
Optionally, instead of passing decoder_input_ids
you can choose to directly pass an embedded
representation. If past_key_values
is used, optionally only the last decoder_inputs_embeds
have to be
input (see past_key_values
). This is useful if you want more control over how to convert
decoder_input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
If decoder_input_ids
and decoder_inputs_embeds
are both unset, decoder_inputs_embeds
takes the value
of inputs_embeds
.
bool
, optional) —
If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see
past_key_values
). bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. Returns
transformers.modeling_outputs.Seq2SeqModelOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.Seq2SeqModelOutput or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (MarianConfig) and inputs.
last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the decoder of the model.
If past_key_values
is used only the last hidden-state of the sequences of shape (batch_size, 1, hidden_size)
is output.
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape
(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the optional initial embedding outputs.
decoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the optional initial embedding outputs.
encoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
The MarianModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, MarianModel
>>> tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de")
>>> model = MarianModel.from_pretrained("Helsinki-NLP/opus-mt-en-de")
>>> inputs = tokenizer("Studies have been shown that owning a dog is good for you", return_tensors="pt")
>>> decoder_inputs = tokenizer(
... "<pad> Studien haben gezeigt dass es hilfreich ist einen Hund zu besitzen",
... return_tensors="pt",
... add_special_tokens=False,
... )
>>> outputs = model(input_ids=inputs.input_ids, decoder_input_ids=decoder_inputs.input_ids)
>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 26, 512]
( config: MarianConfig )
Parameters
The Marian Model with a language modeling head. Can be used for summarization. This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( input_ids: LongTensor = None attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None head_mask: Optional = None decoder_head_mask: Optional = None cross_attn_head_mask: Optional = None encoder_outputs: Union = None past_key_values: Optional = None inputs_embeds: Optional = None decoder_inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.Seq2SeqLMOutput or tuple(torch.FloatTensor)
Parameters
torch.LongTensor
of shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
torch.Tensor
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
torch.LongTensor
of shape (batch_size, target_sequence_length)
, optional) —
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
Marian uses the pad_token_id
as the starting token for decoder_input_ids
generation. If
past_key_values
is used, optionally only the last decoder_input_ids
have to be input (see
past_key_values
).
torch.LongTensor
of shape (batch_size, target_sequence_length)
, optional) —
Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also
be used by default. torch.Tensor
of shape (encoder_layers, encoder_attention_heads)
, optional) —
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in [0, 1]
:
torch.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) —
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in [0, 1]
:
torch.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) —
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in [0, 1]
:
tuple(tuple(torch.FloatTensor)
, optional) —
Tuple consists of (last_hidden_state
, optional: hidden_states
, optional: attentions
)
last_hidden_state
of shape (batch_size, sequence_length, hidden_size)
, optional) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) —
Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape
(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that
don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of all
decoder_input_ids
of shape (batch_size, sequence_length)
.
torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert input_ids
indices into associated vectors than the
model’s internal embedding lookup matrix. torch.FloatTensor
of shape (batch_size, target_sequence_length, hidden_size)
, optional) —
Optionally, instead of passing decoder_input_ids
you can choose to directly pass an embedded
representation. If past_key_values
is used, optionally only the last decoder_inputs_embeds
have to be
input (see past_key_values
). This is useful if you want more control over how to convert
decoder_input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
If decoder_input_ids
and decoder_inputs_embeds
are both unset, decoder_inputs_embeds
takes the value
of inputs_embeds
.
bool
, optional) —
If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see
past_key_values
). bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. torch.LongTensor
of shape (batch_size, sequence_length)
, optional) —
Labels for computing the masked language modeling loss. Indices should either be in [0, ..., config.vocab_size]
or -100 (see input_ids
docstring). Tokens with indices set to -100
are ignored
(masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size]
. Returns
transformers.modeling_outputs.Seq2SeqLMOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.Seq2SeqLMOutput or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (MarianConfig) and inputs.
loss (torch.FloatTensor
of shape (1,)
, optional, returned when labels
is provided) — Language modeling loss.
logits (torch.FloatTensor
of shape (batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape
(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
The MarianMTModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Pytorch version of marian-nmt’s transformer.h (c++). Designed for the OPUS-NMT translation checkpoints. Available models are listed here.
Examples:
>>> from transformers import AutoTokenizer, MarianMTModel
>>> src = "fr" # source language
>>> trg = "en" # target language
>>> model_name = f"Helsinki-NLP/opus-mt-{src}-{trg}"
>>> model = MarianMTModel.from_pretrained(model_name)
>>> tokenizer = AutoTokenizer.from_pretrained(model_name)
>>> sample_text = "où est l'arrêt de bus ?"
>>> batch = tokenizer([sample_text], return_tensors="pt")
>>> generated_ids = model.generate(**batch)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
"Where's the bus stop?"
( input_ids: LongTensor = None attention_mask: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None head_mask: Optional = None cross_attn_head_mask: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)
Parameters
torch.LongTensor
of shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
torch.Tensor
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
if the model is configured as a decoder. torch.FloatTensor
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used
in the cross-attention if the model is configured as a decoder. Mask values selected in [0, 1]
: torch.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) —
Mask to nullify selected heads of the attention modules. Mask values selected in [0, 1]
:
torch.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) —
Mask to nullify selected heads of the cross-attention modules. Mask values selected in [0, 1]
:
tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) —
Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of
shape (batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of
shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
. The two additional
tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those
that don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of
all decoder_input_ids
of shape (batch_size, sequence_length)
.
torch.LongTensor
of shape (batch_size, sequence_length)
, optional) —
Labels for computing the masked language modeling loss. Indices should either be in [0, ..., config.vocab_size]
or -100 (see input_ids
docstring). Tokens with indices set to -100
are ignored
(masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size]
. bool
, optional) —
If set to True
, past_key_values
key value states are returned and can be used to speed up decoding
(see past_key_values
).
bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under
returned tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors
for more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. Returns
transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)
A transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (MarianConfig) and inputs.
loss (torch.FloatTensor
of shape (1,)
, optional, returned when labels
is provided) — Language modeling loss (for next-token prediction).
logits (torch.FloatTensor
of shape (batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Cross attentions weights after the attention softmax, used to compute the weighted average in the cross-attention heads.
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of torch.FloatTensor
tuples of length config.n_layers
, with each tuple containing the cached key,
value states of the self-attention and the cross-attention layers if model is used in encoder-decoder
setting. Only relevant if config.is_decoder = True
.
Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
past_key_values
input) to speed up sequential decoding.
Example:
>>> from transformers import AutoTokenizer, MarianForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-fr-en")
>>> model = MarianForCausalLM.from_pretrained("Helsinki-NLP/opus-mt-fr-en", add_cross_attention=False)
>>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size]
>>> list(logits.shape) == expected_shape
True
( config: MarianConfig *inputs **kwargs )
Parameters
The bare MARIAN Model outputting raw hidden-states without any specific head on top. This model inherits from TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
TensorFlow models and layers in transformers
accept two formats as input:
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like model.fit()
things should “just work” for you - just
pass your inputs and labels in any format that model.fit()
supports! If, however, you want to use the second
format outside of Keras methods like fit()
and predict()
, such as when creating your own layers or models with
the Keras Functional
API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
input_ids
only and nothing else: model(input_ids)
model([input_ids, attention_mask])
or model([input_ids, attention_mask, token_type_ids])
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
Note that when creating models and layers with subclassing then you don’t need to worry about any of this, as you can just pass inputs like you would to any other Python function!
( input_ids: tf.Tensor | None = None attention_mask: tf.Tensor | None = None decoder_input_ids: tf.Tensor | None = None decoder_attention_mask: tf.Tensor | None = None decoder_position_ids: tf.Tensor | None = None head_mask: tf.Tensor | None = None decoder_head_mask: tf.Tensor | None = None cross_attn_head_mask: tf.Tensor | None = None encoder_outputs: tf.Tensor | None = None past_key_values: Tuple[Tuple[tf.Tensor]] | None = None inputs_embeds: tf.Tensor | None = None decoder_inputs_embeds: tf.Tensor | None = None use_cache: bool | None = None output_attentions: bool | None = None output_hidden_states: bool | None = None return_dict: bool | None = None training: bool = False **kwargs ) → transformers.modeling_tf_outputs.TFSeq2SeqModelOutput or tuple(tf.Tensor)
Parameters
tf.Tensor
of shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
tf.Tensor
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
tf.Tensor
of shape (batch_size, target_sequence_length)
, optional) —
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
Marian uses the pad_token_id
as the starting token for decoder_input_ids
generation. If
past_key_values
is used, optionally only the last decoder_input_ids
have to be input (see
past_key_values
).
tf.Tensor
of shape (batch_size, target_sequence_length)
, optional) —
will be made by default and ignore pad tokens. It is not recommended to set this for most use cases. tf.Tensor
of shape (batch_size, sequence_length)
, optional) —
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
range [0, config.max_position_embeddings - 1]
. tf.Tensor
of shape (encoder_layers, encoder_attention_heads)
, optional) —
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in [0, 1]
:
tf.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) —
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in [0, 1]
:
tf.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) —
Mask to nullify selected heads of the cross-attention modules. Mask values selected in [0, 1]
:
tf.FloatTensor
, optional) —
hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
of shape (batch_size, sequence_length, hidden_size)
is a sequence of Tuple[Tuple[tf.Tensor]]
of length config.n_layers
) —
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that
don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of all
decoder_input_ids
of shape (batch_size, sequence_length)
. tf.Tensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert input_ids
indices into associated vectors
than the model’s internal embedding lookup matrix. bool
, optional, defaults to True
) —
If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see
past_key_values
). Set to False
during training, True
during generation bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True. bool
, optional, defaults to False
) —
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation). Returns
transformers.modeling_tf_outputs.TFSeq2SeqModelOutput or tuple(tf.Tensor)
A transformers.modeling_tf_outputs.TFSeq2SeqModelOutput or a tuple of tf.Tensor
(if
return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the
configuration (MarianConfig) and inputs.
last_hidden_state (tf.Tensor
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the decoder of the model.
If past_key_values
is used only the last hidden-state of the sequences of shape (batch_size, 1, hidden_size)
is output.
past_key_values (List[tf.Tensor]
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — List of tf.Tensor
of length config.n_layers
, with each tensor of shape (2, batch_size, num_heads, sequence_length, embed_size_per_head)
).
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(tf.Tensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of tf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape
(batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (tf.Tensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(tf.Tensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of tf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape
(batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
The TFMarianModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, TFMarianModel
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de")
>>> model = TFMarianModel.from_pretrained("Helsinki-NLP/opus-mt-en-de")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
>>> last_hidden_states = outputs.last_hidden_state
( config *inputs **kwargs )
Parameters
The MARIAN Model with a language modeling head. Can be used for summarization. This model inherits from TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
TensorFlow models and layers in transformers
accept two formats as input:
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like model.fit()
things should “just work” for you - just
pass your inputs and labels in any format that model.fit()
supports! If, however, you want to use the second
format outside of Keras methods like fit()
and predict()
, such as when creating your own layers or models with
the Keras Functional
API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
input_ids
only and nothing else: model(input_ids)
model([input_ids, attention_mask])
or model([input_ids, attention_mask, token_type_ids])
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
Note that when creating models and layers with subclassing then you don’t need to worry about any of this, as you can just pass inputs like you would to any other Python function!
( input_ids: tf.Tensor | None = None attention_mask: tf.Tensor | None = None decoder_input_ids: tf.Tensor | None = None decoder_attention_mask: tf.Tensor | None = None decoder_position_ids: tf.Tensor | None = None head_mask: tf.Tensor | None = None decoder_head_mask: tf.Tensor | None = None cross_attn_head_mask: tf.Tensor | None = None encoder_outputs: TFBaseModelOutput | None = None past_key_values: Tuple[Tuple[tf.Tensor]] | None = None inputs_embeds: tf.Tensor | None = None decoder_inputs_embeds: tf.Tensor | None = None use_cache: bool | None = None output_attentions: bool | None = None output_hidden_states: bool | None = None return_dict: bool | None = None labels: tf.Tensor | None = None training: bool = False ) → transformers.modeling_tf_outputs.TFSeq2SeqLMOutput or tuple(tf.Tensor)
Parameters
tf.Tensor
of shape ({0})
) —
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
tf.Tensor
of shape ({0})
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
tf.Tensor
of shape (batch_size, target_sequence_length)
, optional) —
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
Marian uses the pad_token_id
as the starting token for decoder_input_ids
generation. If
past_key_values
is used, optionally only the last decoder_input_ids
have to be input (see
past_key_values
).
tf.Tensor
of shape (batch_size, target_sequence_length)
, optional) —
will be made by default and ignore pad tokens. It is not recommended to set this for most use cases. tf.Tensor
of shape (batch_size, sequence_length)
, optional) —
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
range [0, config.max_position_embeddings - 1]
. tf.Tensor
of shape (encoder_layers, encoder_attention_heads)
, optional) —
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in [0, 1]
:
tf.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) —
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in [0, 1]
:
tf.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) —
Mask to nullify selected heads of the cross-attention modules. Mask values selected in [0, 1]
:
tf.FloatTensor
, optional) —
hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
of shape (batch_size, sequence_length, hidden_size)
is a sequence of Tuple[Tuple[tf.Tensor]]
of length config.n_layers
) —
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that
don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of all
decoder_input_ids
of shape (batch_size, sequence_length)
. tf.Tensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert input_ids
indices into associated vectors
than the model’s internal embedding lookup matrix. bool
, optional, defaults to True
) —
If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see
past_key_values
). Set to False
during training, True
during generation bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True. bool
, optional, defaults to False
) —
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation). tf.tensor
of shape (batch_size, sequence_length)
, optional) —
Labels for computing the masked language modeling loss. Indices should either be in [0, ..., config.vocab_size]
or -100 (see input_ids
docstring). Tokens with indices set to -100
are ignored
(masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size]
. Returns
transformers.modeling_tf_outputs.TFSeq2SeqLMOutput or tuple(tf.Tensor)
A transformers.modeling_tf_outputs.TFSeq2SeqLMOutput or a tuple of tf.Tensor
(if
return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the
configuration (MarianConfig) and inputs.
loss (tf.Tensor
of shape (n,)
, optional, where n is the number of non-masked labels, returned when labels
is provided) — Language modeling loss.
logits (tf.Tensor
of shape (batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (List[tf.Tensor]
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — List of tf.Tensor
of length config.n_layers
, with each tensor of shape (2, batch_size, num_heads, sequence_length, embed_size_per_head)
).
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(tf.Tensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of tf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape
(batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (tf.Tensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(tf.Tensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of tf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape
(batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
The TFMarianMTModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
TF version of marian-nmt’s transformer.h (c++). Designed for the OPUS-NMT translation checkpoints. Available models are listed here.
Examples:
>>> from transformers import AutoTokenizer, TFMarianMTModel
>>> from typing import List
>>> src = "fr" # source language
>>> trg = "en" # target language
>>> sample_text = "où est l'arrêt de bus ?"
>>> model_name = f"Helsinki-NLP/opus-mt-{src}-{trg}"
>>> model = TFMarianMTModel.from_pretrained(model_name)
>>> tokenizer = AutoTokenizer.from_pretrained(model_name)
>>> batch = tokenizer([sample_text], return_tensors="tf")
>>> gen = model.generate(**batch)
>>> tokenizer.batch_decode(gen, skip_special_tokens=True)
"Where is the bus stop ?"
( config: MarianConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
Parameters
jax.numpy.dtype
, optional, defaults to jax.numpy.float32
) —
The data type of the computation. Can be one of jax.numpy.float32
, jax.numpy.float16
(on GPUs) and
jax.numpy.bfloat16
(on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
specified all the computation will be performed with the given dtype
.
Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.
If you wish to change the dtype of the model parameters, see to_fp16() and to_bf16().
The bare Marian Model transformer outputting raw hidden-states without any specific head on top. This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a Flax Linen flax.nn.Module subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
( input_ids: Array attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None position_ids: Optional = None decoder_position_ids: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → transformers.modeling_flax_outputs.FlaxSeq2SeqModelOutput or tuple(torch.FloatTensor)
Parameters
jnp.ndarray
of shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
jnp.ndarray
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
jnp.ndarray
of shape (batch_size, target_sequence_length)
, optional) —
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
For translation and summarization training, decoder_input_ids
should be provided. If no
decoder_input_ids
is provided, the model will create this tensor by shifting the input_ids
to the right
for denoising pre-training following the paper.
jnp.ndarray
of shape (batch_size, target_sequence_length)
, optional) —
Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also
be used by default.
If you want to change padding behavior, you should modify to your needs. See diagram 1 in the paper for more information on the default strategy.
numpy.ndarray
of shape (batch_size, sequence_length)
, optional) —
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
. numpy.ndarray
of shape (batch_size, sequence_length)
, optional) —
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
range [0, config.max_position_embeddings - 1]
. bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. Returns
transformers.modeling_flax_outputs.FlaxSeq2SeqModelOutput or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxSeq2SeqModelOutput or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (MarianConfig) and inputs.
last_hidden_state (jnp.ndarray
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the decoder of the model.
If past_key_values
is used only the last hidden-state of the sequences of shape (batch_size, 1, hidden_size)
is output.
past_key_values (tuple(tuple(jnp.ndarray))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(jnp.ndarray)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape
(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape
(batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (jnp.ndarray
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape
(batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
The FlaxMarianPreTrainedModel
forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, FlaxMarianModel
>>> tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de")
>>> model = FlaxMarianModel.from_pretrained("Helsinki-NLP/opus-mt-en-de")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
( config: MarianConfig input_shape: Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
Parameters
jax.numpy.dtype
, optional, defaults to jax.numpy.float32
) —
The data type of the computation. Can be one of jax.numpy.float32
, jax.numpy.float16
(on GPUs) and
jax.numpy.bfloat16
(on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
specified all the computation will be performed with the given dtype
.
Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.
If you wish to change the dtype of the model parameters, see to_fp16() and to_bf16().
The MARIAN Model with a language modeling head. Can be used for translation. This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a Flax Linen flax.nn.Module subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
( input_ids: Array attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None position_ids: Optional = None decoder_position_ids: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutput or tuple(torch.FloatTensor)
Parameters
jnp.ndarray
of shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
jnp.ndarray
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
jnp.ndarray
of shape (batch_size, target_sequence_length)
, optional) —
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
For translation and summarization training, decoder_input_ids
should be provided. If no
decoder_input_ids
is provided, the model will create this tensor by shifting the input_ids
to the right
for denoising pre-training following the paper.
jnp.ndarray
of shape (batch_size, target_sequence_length)
, optional) —
Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also
be used by default.
If you want to change padding behavior, you should modify to your needs. See diagram 1 in the paper for more information on the default strategy.
numpy.ndarray
of shape (batch_size, sequence_length)
, optional) —
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
. numpy.ndarray
of shape (batch_size, sequence_length)
, optional) —
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
range [0, config.max_position_embeddings - 1]
. bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. Returns
transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutput or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutput or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (MarianConfig) and inputs.
logits (jnp.ndarray
of shape (batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (tuple(tuple(jnp.ndarray))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(jnp.ndarray)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape
(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape
(batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (jnp.ndarray
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape
(batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
The FlaxMarianPreTrainedModel
forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, FlaxMarianMTModel
>>> model = FlaxMarianMTModel.from_pretrained("Helsinki-NLP/opus-mt-en-de")
>>> tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-de")
>>> text = "My friends are cool but they eat too many carbs."
>>> input_ids = tokenizer(text, max_length=64, return_tensors="jax").input_ids
>>> sequences = model.generate(input_ids, max_length=64, num_beams=2).sequences
>>> outputs = tokenizer.batch_decode(sequences, skip_special_tokens=True)
>>> # should give *Meine Freunde sind cool, aber sie essen zu viele Kohlenhydrate.*