The LED model was proposed in Longformer: The Long-Document Transformer by Iz Beltagy, Matthew E. Peters, Arman Cohan.
The abstract from the paper is the following:
Transformer-based models are unable to process long sequences due to their self-attention operation, which scales quadratically with the sequence length. To address this limitation, we introduce the Longformer with an attention mechanism that scales linearly with sequence length, making it easy to process documents of thousands of tokens or longer. Longformer’s attention mechanism is a drop-in replacement for the standard self-attention and combines a local windowed attention with a task motivated global attention. Following prior work on long-sequence transformers, we evaluate Longformer on character-level language modeling and achieve state-of-the-art results on text8 and enwik8. In contrast to most prior work, we also pretrain Longformer and finetune it on a variety of downstream tasks. Our pretrained Longformer consistently outperforms RoBERTa on long document tasks and sets new state-of-the-art results on WikiHop and TriviaQA. We finally introduce the Longformer-Encoder-Decoder (LED), a Longformer variant for supporting long document generative sequence-to-sequence tasks, and demonstrate its effectiveness on the arXiv summarization dataset.
input_ids
largely exceed a length of
1024 tokens.input_ids
to be a multiple of config.attention_window
if required. Therefore a small speed-up is
gained, when LEDTokenizer is used with the pad_to_multiple_of
argument.global_attention_mask
(see
LongformerModel). For summarization, it is advised to put global attention only on the first
<s>
token. For question answering, it is advised to put global attention on all tokens of the question.model.gradient_checkpointing_enable()
.
Moreover, the use_cache=False
flag can be used to disable the caching mechanism to save memory.This model was contributed by patrickvonplaten.
( vocab_size = 50265 max_encoder_position_embeddings = 16384 max_decoder_position_embeddings = 1024 encoder_layers = 12 encoder_ffn_dim = 4096 encoder_attention_heads = 16 decoder_layers = 12 decoder_ffn_dim = 4096 decoder_attention_heads = 16 encoder_layerdrop = 0.0 decoder_layerdrop = 0.0 use_cache = True is_encoder_decoder = True activation_function = 'gelu' d_model = 1024 dropout = 0.1 attention_dropout = 0.0 activation_dropout = 0.0 init_std = 0.02 decoder_start_token_id = 2 classifier_dropout = 0.0 pad_token_id = 1 bos_token_id = 0 eos_token_id = 2 attention_window: Union = 512 **kwargs )
Parameters
int
, optional, defaults to 50265) —
Vocabulary size of the LED model. Defines the number of different tokens that can be represented by the
inputs_ids
passed when calling LEDModel or TFLEDModel. int
, optional, defaults to 1024) —
Dimensionality of the layers and the pooler layer. int
, optional, defaults to 12) —
Number of encoder layers. int
, optional, defaults to 12) —
Number of decoder layers. int
, optional, defaults to 16) —
Number of attention heads for each attention layer in the Transformer encoder. int
, optional, defaults to 16) —
Number of attention heads for each attention layer in the Transformer decoder. int
, optional, defaults to 4096) —
Dimensionality of the “intermediate” (often named feed-forward) layer in decoder. int
, optional, defaults to 4096) —
Dimensionality of the “intermediate” (often named feed-forward) layer in decoder. str
or function
, optional, defaults to "gelu"
) —
The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu"
,
"relu"
, "silu"
and "gelu_new"
are supported. float
, optional, defaults to 0.1) —
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. float
, optional, defaults to 0.0) —
The dropout ratio for the attention probabilities. float
, optional, defaults to 0.0) —
The dropout ratio for activations inside the fully connected layer. float
, optional, defaults to 0.0) —
The dropout ratio for classifier. int
, optional, defaults to 16384) —
The maximum sequence length that the encoder might ever be used with. int
, optional, defaults to 16384) —
The maximum sequence length that the decoder might ever be used with. float
, optional, defaults to 0.02) —
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. float
, optional, defaults to 0.0) —
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details. float
, optional, defaults to 0.0) —
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details. bool
, optional, defaults to True
) —
Whether or not the model should return the last key/values attentions (not used by all models) This is the configuration class to store the configuration of a LEDModel. It is used to instantiate an LED model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the LED allenai/led-base-16384 architecture.
Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.
Example:
>>> from transformers import LEDModel, LEDConfig
>>> # Initializing a LED allenai/led-base-16384 style configuration
>>> configuration = LEDConfig()
>>> # Initializing a model from the allenai/led-base-16384 style configuration
>>> model = LEDModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
( vocab_file merges_file errors = 'replace' bos_token = '<s>' eos_token = '</s>' sep_token = '</s>' cls_token = '<s>' unk_token = '<unk>' pad_token = '<pad>' mask_token = '<mask>' add_prefix_space = False **kwargs )
Parameters
str
) —
Path to the vocabulary file. str
) —
Path to the merges file. str
, optional, defaults to "replace"
) —
Paradigm to follow when decoding bytes to UTF-8. See
bytes.decode for more information. str
, optional, defaults to "<s>"
) —
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the cls_token
.
str
, optional, defaults to "</s>"
) —
The end of sequence token.
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the sep_token
.
str
, optional, defaults to "</s>"
) —
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens. str
, optional, defaults to "<s>"
) —
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens. str
, optional, defaults to "<unk>"
) —
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead. str
, optional, defaults to "<pad>"
) —
The token used for padding, for example when batching sequences of different lengths. str
, optional, defaults to "<mask>"
) —
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict. bool
, optional, defaults to False
) —
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
other word. (BART tokenizer detect beginning of words by the preceding space). Constructs a LED tokenizer, which is smilar to the ROBERTa tokenizer, using byte-level Byte-Pair-Encoding.
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
be encoded differently whether it is at the beginning of the sentence (without space) or not:
>>> from transformers import LEDTokenizer
>>> tokenizer = LEDTokenizer.from_pretrained("allenai/led-base-16384")
>>> tokenizer("Hello world")["input_ids"]
[0, 31414, 232, 2]
>>> tokenizer(" Hello world")["input_ids"]
[0, 20920, 232, 2]
You can get around that behavior by passing add_prefix_space=True
when instantiating this tokenizer or when you
call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.
When used with is_split_into_words=True
, this tokenizer will add a space before each word (even the first one).
This tokenizer inherits from PreTrainedTokenizer which contains most of the main methods. Users should refer to this superclass for more information regarding those methods.
( token_ids_0: List token_ids_1: Optional = None ) → List[int]
Parameters
List[int]
) —
List of IDs to which the special tokens will be added. List[int]
, optional) —
Optional second list of IDs for sequence pairs. Returns
List[int]
List of input IDs with the appropriate special tokens.
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A LED sequence has the following format:
<s> X </s>
<s> A </s></s> B </s>
( token_ids_0: List token_ids_1: Optional = None already_has_special_tokens: bool = False ) → List[int]
Parameters
List[int]
) —
List of IDs. List[int]
, optional) —
Optional second list of IDs for sequence pairs. bool
, optional, defaults to False
) —
Whether or not the token list is already formatted with special tokens for the model. Returns
List[int]
A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer prepare_for_model
method.
( token_ids_0: List token_ids_1: Optional = None ) → List[int]
Create a mask from the two sequences passed to be used in a sequence-pair classification task. LED does not make use of token type ids, therefore a list of zeros is returned.
( vocab_file = None merges_file = None tokenizer_file = None errors = 'replace' bos_token = '<s>' eos_token = '</s>' sep_token = '</s>' cls_token = '<s>' unk_token = '<unk>' pad_token = '<pad>' mask_token = '<mask>' add_prefix_space = False trim_offsets = True **kwargs )
Parameters
str
) —
Path to the vocabulary file. str
) —
Path to the merges file. str
, optional, defaults to "replace"
) —
Paradigm to follow when decoding bytes to UTF-8. See
bytes.decode for more information. str
, optional, defaults to "<s>"
) —
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the cls_token
.
str
, optional, defaults to "</s>"
) —
The end of sequence token.
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the sep_token
.
str
, optional, defaults to "</s>"
) —
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens. str
, optional, defaults to "<s>"
) —
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens. str
, optional, defaults to "<unk>"
) —
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead. str
, optional, defaults to "<pad>"
) —
The token used for padding, for example when batching sequences of different lengths. str
, optional, defaults to "<mask>"
) —
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict. bool
, optional, defaults to False
) —
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
other word. (LED tokenizer detect beginning of words by the preceding space). bool
, optional, defaults to True
) —
Whether the post processing step should trim offsets to avoid including whitespaces. Construct a “fast” LED tokenizer (backed by HuggingFace’s tokenizers library), derived from the GPT-2 tokenizer, using byte-level Byte-Pair-Encoding.
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
be encoded differently whether it is at the beginning of the sentence (without space) or not:
>>> from transformers import LEDTokenizerFast
>>> tokenizer = LEDTokenizerFast.from_pretrained("allenai/led-base-16384")
>>> tokenizer("Hello world")["input_ids"]
[0, 31414, 232, 2]
>>> tokenizer(" Hello world")["input_ids"]
[0, 20920, 232, 2]
You can get around that behavior by passing add_prefix_space=True
when instantiating this tokenizer or when you
call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.
When used with is_split_into_words=True
, this tokenizer needs to be instantiated with add_prefix_space=True
.
This tokenizer inherits from PreTrainedTokenizerFast which contains most of the main methods. Users should refer to this superclass for more information regarding those methods.
( token_ids_0: List token_ids_1: Optional = None ) → List[int]
Create a mask from the two sequences passed to be used in a sequence-pair classification task. LED does not make use of token type ids, therefore a list of zeros is returned.
( last_hidden_state: FloatTensor hidden_states: Optional = None attentions: Optional = None global_attentions: Optional = None )
Parameters
torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
) —
Sequence of hidden-states at the output of the last layer of the model. tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) —
Tuple of torch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of
shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) —
Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, x + attention_window + 1)
, where x
is the number of tokens with global attention mask.
Local attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads. Those are the attention weights from every token in the sequence to every token with
global attention (first x
values) and to every token in the attention window (remaining `attention_window
values). Note that the first
xvalues refer to tokens with fixed positions in the text, but the remaining
attention_window + 1values refer to tokens with relative positions: the attention weight of a token to itself is located at index
x + attention_window / 2and the
attention_window / 2preceding (succeeding) values are the attention weights to the
attention_window / 2preceding (succeeding) tokens. If the attention window contains a token with global attention, the attention weight at the corresponding index is set to 0; the value should be accessed from the first
xattention weights. If a token has global attention, the attention weights to all other tokens in
attentionsis set to 0, the values should be accessed from
global_attentions`.tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) —
Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, x)
,
where x
is the number of tokens with global attention mask.
Global attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token with global attention to every token in the sequence.
Base class for LEDEncoder’s outputs, with potential hidden states, local and global attentions.
( last_hidden_state: FloatTensor = None past_key_values: Optional = None decoder_hidden_states: Optional = None decoder_attentions: Optional = None cross_attentions: Optional = None encoder_last_hidden_state: Optional = None encoder_hidden_states: Optional = None encoder_attentions: Optional = None encoder_global_attentions: Optional = None )
Parameters
torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
) —
Sequence of hidden-states at the output of the last layer of the decoder of the model.
If past_key_values
is used only the last hidden-state of the sequences of shape (batch_size, 1, hidden_size)
is output.
List[torch.FloatTensor]
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) —
List of torch.FloatTensor
of length config.n_layers
, with each tensor of shape (2, batch_size, num_heads, sequence_length, embed_size_per_head)
).
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
used (see past_key_values
input) to speed up sequential decoding.
tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) —
Tuple of torch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of
shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) —
Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) —
Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Sequence of hidden-states at the output of the last layer of the encoder of the model. tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) —
Tuple of torch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of
shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) —
Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) —
Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, x)
,
where x
is the number of tokens with global attention mask.
Global attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token with global attention to every token in the sequence.
Base class for model encoder’s outputs that also contains : pre-computed hidden states that can speed up sequential decoding.
( loss: Optional = None logits: FloatTensor = None past_key_values: Optional = None decoder_hidden_states: Optional = None decoder_attentions: Optional = None cross_attentions: Optional = None encoder_last_hidden_state: Optional = None encoder_hidden_states: Optional = None encoder_attentions: Optional = None encoder_global_attentions: Optional = None )
Parameters
torch.FloatTensor
of shape (1,)
, optional, returned when labels
is provided) —
Language modeling loss. torch.FloatTensor
of shape (batch_size, sequence_length, config.vocab_size)
) —
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). List[torch.FloatTensor]
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) —
List of torch.FloatTensor
of length config.n_layers
, with each tensor of shape (2, batch_size, num_heads, sequence_length, embed_size_per_head)
).
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
used (see past_key_values
input) to speed up sequential decoding.
tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) —
Tuple of torch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of
shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) —
Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) —
Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Sequence of hidden-states at the output of the last layer of the encoder of the model. tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) —
Tuple of torch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of
shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) —
Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) —
Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, x)
,
where x
is the number of tokens with global attention mask.
Global attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token with global attention to every token in the sequence.
Base class for sequence-to-sequence language models outputs.
( loss: Optional = None logits: FloatTensor = None past_key_values: Optional = None decoder_hidden_states: Optional = None decoder_attentions: Optional = None cross_attentions: Optional = None encoder_last_hidden_state: Optional = None encoder_hidden_states: Optional = None encoder_attentions: Optional = None encoder_global_attentions: Optional = None )
Parameters
torch.FloatTensor
of shape (1,)
, optional, returned when label
is provided) —
Classification (or regression if config.num_labels==1) loss. torch.FloatTensor
of shape (batch_size, config.num_labels)
) —
Classification (or regression if config.num_labels==1) scores (before SoftMax). List[torch.FloatTensor]
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) —
List of torch.FloatTensor
of length config.n_layers
, with each tensor of shape (2, batch_size, num_heads, sequence_length, embed_size_per_head)
).
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
used (see past_key_values
input) to speed up sequential decoding.
tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) —
Tuple of torch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of
shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) —
Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) —
Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Sequence of hidden-states at the output of the last layer of the encoder of the model. tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) —
Tuple of torch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of
shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) —
Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) —
Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, x)
,
where x
is the number of tokens with global attention mask.
Global attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token with global attention to every token in the sequence.
Base class for outputs of sequence-to-sequence sentence classification models.
( loss: Optional = None start_logits: FloatTensor = None end_logits: FloatTensor = None past_key_values: Optional = None decoder_hidden_states: Optional = None decoder_attentions: Optional = None cross_attentions: Optional = None encoder_last_hidden_state: Optional = None encoder_hidden_states: Optional = None encoder_attentions: Optional = None encoder_global_attentions: Optional = None )
Parameters
torch.FloatTensor
of shape (1,)
, optional, returned when labels
is provided) —
Total span extraction loss is the sum of a Cross-Entropy for the start and end positions. torch.FloatTensor
of shape (batch_size, sequence_length)
) —
Span-start scores (before SoftMax). torch.FloatTensor
of shape (batch_size, sequence_length)
) —
Span-end scores (before SoftMax). List[torch.FloatTensor]
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) —
List of torch.FloatTensor
of length config.n_layers
, with each tensor of shape (2, batch_size, num_heads, sequence_length, embed_size_per_head)
).
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
used (see past_key_values
input) to speed up sequential decoding.
tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) —
Tuple of torch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of
shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) —
Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) —
Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Sequence of hidden-states at the output of the last layer of the encoder of the model. tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) —
Tuple of torch.FloatTensor
(one for the output of the embeddings + one for the output of each layer) of
shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) —
Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) —
Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, x)
,
where x
is the number of tokens with global attention mask.
Global attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token with global attention to every token in the sequence.
Base class for outputs of sequence-to-sequence question answering models.
( last_hidden_state: tf.Tensor = None hidden_states: Tuple[tf.Tensor, ...] | None = None attentions: Tuple[tf.Tensor, ...] | None = None global_attentions: Tuple[tf.Tensor, ...] | None = None )
Parameters
tf.Tensor
of shape (batch_size, sequence_length, hidden_size)
) —
Sequence of hidden-states at the output of the last layer of the model. tuple(tf.Tensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) —
Tuple of tf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape
(batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) —
Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, x + attention_window + 1)
, where x
is the number of tokens with global attention mask.
Local attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads. Those are the attention weights from every token in the sequence to every token with
global attention (first x
values) and to every token in the attention window (remaining `attention_window
values). Note that the first
xvalues refer to tokens with fixed positions in the text, but the remaining
attention_window + 1values refer to tokens with relative positions: the attention weight of a token to itself is located at index
x + attention_window / 2and the
attention_window / 2preceding (succeeding) values are the attention weights to the
attention_window / 2preceding (succeeding) tokens. If the attention window contains a token with global attention, the attention weight at the corresponding index is set to 0; the value should be accessed from the first
xattention weights. If a token has global attention, the attention weights to all other tokens in
attentionsis set to 0, the values should be accessed from
global_attentions`.tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) —
Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, x)
, where x
is the number of tokens with global attention mask.
Global attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token with global attention to every token in the sequence.
Base class for Longformer’s outputs, with potential hidden states, local and global attentions.
( last_hidden_state: tf.Tensor = None past_key_values: List[tf.Tensor] | None = None decoder_hidden_states: Tuple[tf.Tensor, ...] | None = None decoder_attentions: Tuple[tf.Tensor, ...] | None = None cross_attentions: Tuple[tf.Tensor, ...] | None = None encoder_last_hidden_state: tf.Tensor | None = None encoder_hidden_states: Tuple[tf.Tensor, ...] | None = None encoder_attentions: Tuple[tf.Tensor, ...] | None = None encoder_global_attentions: Tuple[tf.Tensor, ...] | None = None )
Parameters
tf.Tensor
of shape (batch_size, sequence_length, hidden_size)
) —
Sequence of hidden-states at the output of the last layer of the decoder of the model.
If past_key_values
is used only the last hidden-state of the sequences of shape (batch_size, 1, hidden_size)
is output.
List[tf.Tensor]
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) —
List of tf.Tensor
of length config.n_layers
, with each tensor of shape (2, batch_size, num_heads, sequence_length, embed_size_per_head)
).
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
used (see past_key_values
input) to speed up sequential decoding.
tuple(tf.Tensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) —
Tuple of tf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape
(batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) —
Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) —
Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
tf.Tensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Sequence of hidden-states at the output of the last layer of the encoder of the model. tuple(tf.Tensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) —
Tuple of tf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape
(batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) —
Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) —
Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, x)
, where x
is the number of tokens with global attention mask.
Global attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token with global attention to every token in the sequence.
Base class for model encoder’s outputs that also contains : pre-computed hidden states that can speed up sequential decoding.
( loss: tf.Tensor | None = None logits: tf.Tensor = None past_key_values: List[tf.Tensor] | None = None decoder_hidden_states: Tuple[tf.Tensor, ...] | None = None decoder_attentions: Tuple[tf.Tensor, ...] | None = None cross_attentions: Tuple[tf.Tensor, ...] | None = None encoder_last_hidden_state: tf.Tensor | None = None encoder_hidden_states: Tuple[tf.Tensor, ...] | None = None encoder_attentions: Tuple[tf.Tensor, ...] | None = None encoder_global_attentions: Tuple[tf.Tensor, ...] | None = None )
Parameters
tf.Tensor
of shape (1,)
, optional, returned when labels
is provided) —
Language modeling loss. tf.Tensor
of shape (batch_size, sequence_length, config.vocab_size)
) —
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). List[tf.Tensor]
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) —
List of tf.Tensor
of length config.n_layers
, with each tensor of shape (2, batch_size, num_heads, sequence_length, embed_size_per_head)
).
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
used (see past_key_values
input) to speed up sequential decoding.
tuple(tf.Tensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) —
Tuple of tf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape
(batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) —
Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) —
Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
tf.Tensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Sequence of hidden-states at the output of the last layer of the encoder of the model. tuple(tf.Tensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) —
Tuple of tf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape
(batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) —
Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) —
Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, x)
, where x
is the number of tokens with global attention mask.
Global attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token with global attention to every token in the sequence.
Base class for sequence-to-sequence language models outputs.
( config: LEDConfig )
Parameters
The bare LED Model outputting raw hidden-states without any specific head on top. This model inherits from PreTrainedModel. See the superclass documentation for the generic methods the library implements for all its models (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for general usage and behavior.
( input_ids: Optional = None attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None head_mask: Optional = None decoder_head_mask: Optional = None cross_attn_head_mask: Optional = None encoder_outputs: Optional = None global_attention_mask: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None decoder_inputs_embeds: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.Seq2SeqModelOutput or tuple(torch.FloatTensor)
Parameters
torch.LongTensor
of shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
torch.Tensor
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
torch.LongTensor
of shape (batch_size, target_sequence_length)
, optional) —
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using LedTokenizer
. See PreTrainedTokenizer.encode() and
PreTrainedTokenizer.call() for details.
LED uses the eos_token_id
as the starting token for decoder_input_ids
generation. If past_key_values
is used, optionally only the last decoder_input_ids
have to be input (see past_key_values
).
torch.LongTensor
of shape (batch_size, target_sequence_length)
, optional) —
Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also
be used by default.
If you want to change padding behavior, you should read modeling_led._prepare_decoder_inputs
and modify
to your needs. See diagram 1 in the paper for more information on the
default strategy.
torch.FloatTensor
of shape (batch_size, sequence_length)
, optional) —
Mask to decide the attention given on each token, local attention or global attention for the encoder.
Tokens with global attention attends to all other tokens, and all other tokens attend to them. This is
important for task-specific finetuning because it makes the model more flexible at representing the task.
For example, for classification, the [0, 1]
:torch.Tensor
of shape (encoder_layers, encoder_attention_heads)
, optional) —
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in [0, 1]
:
torch.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) —
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in [0, 1]
:
torch.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) —
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in [0, 1]
:
tuple(tuple(torch.FloatTensor)
, optional) —
Tuple consists of (last_hidden_state
, optional: hidden_states
, optional: attentions
)
last_hidden_state
of shape (batch_size, sequence_length, hidden_size)
, optional) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) —
Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape
(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that
don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of all
decoder_input_ids
of shape (batch_size, sequence_length)
.
torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert input_ids
indices into associated vectors than the
model’s internal embedding lookup matrix. torch.FloatTensor
of shape (batch_size, target_sequence_length, hidden_size)
, optional) —
Optionally, instead of passing decoder_input_ids
you can choose to directly pass an embedded
representation. If past_key_values
is used, optionally only the last decoder_inputs_embeds
have to be
input (see past_key_values
). This is useful if you want more control over how to convert
decoder_input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
If decoder_input_ids
and decoder_inputs_embeds
are both unset, decoder_inputs_embeds
takes the value
of inputs_embeds
.
bool
, optional) —
If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see
past_key_values
). bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. Returns
transformers.modeling_outputs.Seq2SeqModelOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.Seq2SeqModelOutput or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (LEDConfig) and inputs.
last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the decoder of the model.
If past_key_values
is used only the last hidden-state of the sequences of shape (batch_size, 1, hidden_size)
is output.
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape
(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the optional initial embedding outputs.
decoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the optional initial embedding outputs.
encoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
The LEDModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, LEDModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("allenai/led-base-16384")
>>> model = LEDModel.from_pretrained("allenai/led-base-16384")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
( config: LEDConfig )
Parameters
The LED Model with a language modeling head. Can be used for summarization. This model inherits from PreTrainedModel. See the superclass documentation for the generic methods the library implements for all its models (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for general usage and behavior.
( input_ids: Optional = None attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None head_mask: Optional = None decoder_head_mask: Optional = None cross_attn_head_mask: Optional = None encoder_outputs: Optional = None global_attention_mask: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None decoder_inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.Seq2SeqLMOutput or tuple(torch.FloatTensor)
Parameters
torch.LongTensor
of shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
torch.Tensor
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
torch.LongTensor
of shape (batch_size, target_sequence_length)
, optional) —
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using LedTokenizer
. See PreTrainedTokenizer.encode() and
PreTrainedTokenizer.call() for details.
LED uses the eos_token_id
as the starting token for decoder_input_ids
generation. If past_key_values
is used, optionally only the last decoder_input_ids
have to be input (see past_key_values
).
torch.LongTensor
of shape (batch_size, target_sequence_length)
, optional) —
Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also
be used by default.
If you want to change padding behavior, you should read modeling_led._prepare_decoder_inputs
and modify
to your needs. See diagram 1 in the paper for more information on the
default strategy.
torch.FloatTensor
of shape (batch_size, sequence_length)
, optional) —
Mask to decide the attention given on each token, local attention or global attention for the encoder.
Tokens with global attention attends to all other tokens, and all other tokens attend to them. This is
important for task-specific finetuning because it makes the model more flexible at representing the task.
For example, for classification, the [0, 1]
:torch.Tensor
of shape (encoder_layers, encoder_attention_heads)
, optional) —
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in [0, 1]
:
torch.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) —
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in [0, 1]
:
torch.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) —
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in [0, 1]
:
tuple(tuple(torch.FloatTensor)
, optional) —
Tuple consists of (last_hidden_state
, optional: hidden_states
, optional: attentions
)
last_hidden_state
of shape (batch_size, sequence_length, hidden_size)
, optional) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) —
Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape
(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that
don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of all
decoder_input_ids
of shape (batch_size, sequence_length)
.
torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert input_ids
indices into associated vectors than the
model’s internal embedding lookup matrix. torch.FloatTensor
of shape (batch_size, target_sequence_length, hidden_size)
, optional) —
Optionally, instead of passing decoder_input_ids
you can choose to directly pass an embedded
representation. If past_key_values
is used, optionally only the last decoder_inputs_embeds
have to be
input (see past_key_values
). This is useful if you want more control over how to convert
decoder_input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
If decoder_input_ids
and decoder_inputs_embeds
are both unset, decoder_inputs_embeds
takes the value
of inputs_embeds
.
bool
, optional) —
If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see
past_key_values
). bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. torch.LongTensor
of shape (batch_size, sequence_length)
, optional) —
Labels for computing the masked language modeling loss. Indices should either be in [0, ..., config.vocab_size]
or -100 (see input_ids
docstring). Tokens with indices set to -100
are ignored
(masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size]
. Returns
transformers.modeling_outputs.Seq2SeqLMOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.Seq2SeqLMOutput or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (LEDConfig) and inputs.
loss (torch.FloatTensor
of shape (1,)
, optional, returned when labels
is provided) — Language modeling loss.
logits (torch.FloatTensor
of shape (batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape
(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
The LEDForConditionalGeneration forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Conditional generation example:
>>> from transformers import AutoTokenizer, LEDForConditionalGeneration
>>> tokenizer = AutoTokenizer.from_pretrained("allenai/led-base-16384")
>>> TXT = "My friends are <mask> but they eat too many carbs."
>>> model = LEDForConditionalGeneration.from_pretrained("allenai/led-base-16384")
>>> input_ids = tokenizer([TXT], return_tensors="pt")["input_ids"]
>>> prediction = model.generate(input_ids)[0]
>>> print(tokenizer.decode(prediction, skip_special_tokens=True))
Summarization example:
>>> import torch
>>> from transformers import AutoTokenizer, LEDForConditionalGeneration
>>> model = LEDForConditionalGeneration.from_pretrained("allenai/led-large-16384-arxiv")
>>> tokenizer = AutoTokenizer.from_pretrained("allenai/led-large-16384-arxiv")
>>> ARTICLE_TO_SUMMARIZE = '''Transformers (Vaswani et al., 2017) have achieved state-of-the-art
... results in a wide range of natural language tasks including generative language modeling
... (Dai et al., 2019; Radford et al., 2019) and discriminative ... language understanding (Devlin et al., 2019).
... This success is partly due to the self-attention component which enables the network to capture contextual
... information from the entire sequence. While powerful, the memory and computational requirements of
... self-attention grow quadratically with sequence length, making it infeasible (or very expensive) to
... process long sequences. To address this limitation, we present Longformer, a modified Transformer
... architecture with a self-attention operation that scales linearly with the sequence length, making it
... versatile for processing long documents (Fig 1). This is an advantage for natural language tasks such as
... long document classification, question answering (QA), and coreference resolution, where existing approaches
... partition or shorten the long context into smaller sequences that fall within the typical 512 token limit
... of BERT-style pretrained models. Such partitioning could potentially result in loss of important
... cross-partition information, and to mitigate this problem, existing methods often rely on complex
... architectures to address such interactions. On the other hand, our proposed Longformer is able to build
... contextual representations of the entire context using multiple layers of attention, reducing the need for
... task-specific architectures.'''
>>> inputs = tokenizer.encode(ARTICLE_TO_SUMMARIZE, return_tensors="pt")
>>> # Global attention on the first token (cf. Beltagy et al. 2020)
>>> global_attention_mask = torch.zeros_like(inputs)
>>> global_attention_mask[:, 0] = 1
>>> # Generate Summary
>>> summary_ids = model.generate(inputs, global_attention_mask=global_attention_mask, num_beams=3, max_length=32)
>>> print(tokenizer.decode(summary_ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=True))
( config: LEDConfig **kwargs )
Parameters
LED model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.
This model inherits from PreTrainedModel. See the superclass documentation for the generic methods the library implements for all its models (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for general usage and behavior.
( input_ids: Optional = None attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None head_mask: Optional = None decoder_head_mask: Optional = None cross_attn_head_mask: Optional = None encoder_outputs: Optional = None global_attention_mask: Optional = None inputs_embeds: Optional = None decoder_inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.Seq2SeqSequenceClassifierOutput or tuple(torch.FloatTensor)
Parameters
torch.LongTensor
of shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
torch.Tensor
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
torch.LongTensor
of shape (batch_size, target_sequence_length)
, optional) —
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using LedTokenizer
. See PreTrainedTokenizer.encode() and
PreTrainedTokenizer.call() for details.
LED uses the eos_token_id
as the starting token for decoder_input_ids
generation. If past_key_values
is used, optionally only the last decoder_input_ids
have to be input (see past_key_values
).
torch.LongTensor
of shape (batch_size, target_sequence_length)
, optional) —
Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also
be used by default.
If you want to change padding behavior, you should read modeling_led._prepare_decoder_inputs
and modify
to your needs. See diagram 1 in the paper for more information on the
default strategy.
torch.FloatTensor
of shape (batch_size, sequence_length)
, optional) —
Mask to decide the attention given on each token, local attention or global attention for the encoder.
Tokens with global attention attends to all other tokens, and all other tokens attend to them. This is
important for task-specific finetuning because it makes the model more flexible at representing the task.
For example, for classification, the [0, 1]
:torch.Tensor
of shape (encoder_layers, encoder_attention_heads)
, optional) —
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in [0, 1]
:
torch.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) —
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in [0, 1]
:
torch.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) —
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in [0, 1]
:
tuple(tuple(torch.FloatTensor)
, optional) —
Tuple consists of (last_hidden_state
, optional: hidden_states
, optional: attentions
)
last_hidden_state
of shape (batch_size, sequence_length, hidden_size)
, optional) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) —
Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape
(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that
don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of all
decoder_input_ids
of shape (batch_size, sequence_length)
.
torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert input_ids
indices into associated vectors than the
model’s internal embedding lookup matrix. torch.FloatTensor
of shape (batch_size, target_sequence_length, hidden_size)
, optional) —
Optionally, instead of passing decoder_input_ids
you can choose to directly pass an embedded
representation. If past_key_values
is used, optionally only the last decoder_inputs_embeds
have to be
input (see past_key_values
). This is useful if you want more control over how to convert
decoder_input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
If decoder_input_ids
and decoder_inputs_embeds
are both unset, decoder_inputs_embeds
takes the value
of inputs_embeds
.
bool
, optional) —
If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see
past_key_values
). bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. torch.LongTensor
of shape (batch_size,)
, optional) —
Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]
. If config.num_labels > 1
a classification loss is computed (Cross-Entropy). Returns
transformers.modeling_outputs.Seq2SeqSequenceClassifierOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.Seq2SeqSequenceClassifierOutput or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (LEDConfig) and inputs.
loss (torch.FloatTensor
of shape (1,)
, optional, returned when label
is provided) — Classification (or regression if config.num_labels==1) loss.
logits (torch.FloatTensor
of shape (batch_size, config.num_labels)
) — Classification (or regression if config.num_labels==1) scores (before SoftMax).
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape
(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
The LEDForSequenceClassification forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example of single-label classification:
>>> import torch
>>> from transformers import AutoTokenizer, LEDForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("allenai/led-base-16384")
>>> model = LEDForSequenceClassification.from_pretrained("allenai/led-base-16384")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = LEDForSequenceClassification.from_pretrained("allenai/led-base-16384", num_labels=num_labels)
>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
Example of multi-label classification:
>>> import torch
>>> from transformers import AutoTokenizer, LEDForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("allenai/led-base-16384")
>>> model = LEDForSequenceClassification.from_pretrained("allenai/led-base-16384", problem_type="multi_label_classification")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = LEDForSequenceClassification.from_pretrained(
... "allenai/led-base-16384", num_labels=num_labels, problem_type="multi_label_classification"
... )
>>> labels = torch.sum(
... torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss
( config )
Parameters
LED Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layer
on top of the hidden-states output to compute span start logits
and span end logits
).
This model inherits from PreTrainedModel. See the superclass documentation for the generic methods the library implements for all its models (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for general usage and behavior.
( input_ids: Optional = None attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None head_mask: Optional = None decoder_head_mask: Optional = None cross_attn_head_mask: Optional = None encoder_outputs: Optional = None global_attention_mask: Optional = None start_positions: Optional = None end_positions: Optional = None inputs_embeds: Optional = None decoder_inputs_embeds: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.Seq2SeqQuestionAnsweringModelOutput or tuple(torch.FloatTensor)
Parameters
torch.LongTensor
of shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
torch.Tensor
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
torch.LongTensor
of shape (batch_size, target_sequence_length)
, optional) —
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using LedTokenizer
. See PreTrainedTokenizer.encode() and
PreTrainedTokenizer.call() for details.
LED uses the eos_token_id
as the starting token for decoder_input_ids
generation. If past_key_values
is used, optionally only the last decoder_input_ids
have to be input (see past_key_values
).
torch.LongTensor
of shape (batch_size, target_sequence_length)
, optional) —
Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also
be used by default.
If you want to change padding behavior, you should read modeling_led._prepare_decoder_inputs
and modify
to your needs. See diagram 1 in the paper for more information on the
default strategy.
torch.FloatTensor
of shape (batch_size, sequence_length)
, optional) —
Mask to decide the attention given on each token, local attention or global attention for the encoder.
Tokens with global attention attends to all other tokens, and all other tokens attend to them. This is
important for task-specific finetuning because it makes the model more flexible at representing the task.
For example, for classification, the [0, 1]
:torch.Tensor
of shape (encoder_layers, encoder_attention_heads)
, optional) —
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in [0, 1]
:
torch.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) —
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in [0, 1]
:
torch.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) —
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in [0, 1]
:
tuple(tuple(torch.FloatTensor)
, optional) —
Tuple consists of (last_hidden_state
, optional: hidden_states
, optional: attentions
)
last_hidden_state
of shape (batch_size, sequence_length, hidden_size)
, optional) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) —
Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape
(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that
don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of all
decoder_input_ids
of shape (batch_size, sequence_length)
.
torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert input_ids
indices into associated vectors than the
model’s internal embedding lookup matrix. torch.FloatTensor
of shape (batch_size, target_sequence_length, hidden_size)
, optional) —
Optionally, instead of passing decoder_input_ids
you can choose to directly pass an embedded
representation. If past_key_values
is used, optionally only the last decoder_inputs_embeds
have to be
input (see past_key_values
). This is useful if you want more control over how to convert
decoder_input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
If decoder_input_ids
and decoder_inputs_embeds
are both unset, decoder_inputs_embeds
takes the value
of inputs_embeds
.
bool
, optional) —
If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see
past_key_values
). bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. torch.LongTensor
of shape (batch_size,)
, optional) —
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence
are not taken into account for computing the loss. torch.LongTensor
of shape (batch_size,)
, optional) —
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence
are not taken into account for computing the loss. Returns
transformers.modeling_outputs.Seq2SeqQuestionAnsweringModelOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.Seq2SeqQuestionAnsweringModelOutput or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (LEDConfig) and inputs.
loss (torch.FloatTensor
of shape (1,)
, optional, returned when labels
is provided) — Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
start_logits (torch.FloatTensor
of shape (batch_size, sequence_length)
) — Span-start scores (before SoftMax).
end_logits (torch.FloatTensor
of shape (batch_size, sequence_length)
) — Span-end scores (before SoftMax).
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape
(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
The LEDForQuestionAnswering forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, LEDForQuestionAnswering
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("allenai/led-base-16384")
>>> model = LEDForQuestionAnswering.from_pretrained("allenai/led-base-16384")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])
>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
( config *inputs **kwargs )
Parameters
The bare LED Model outputting raw hidden-states without any specific head on top. This model inherits from TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
TensorFlow models and layers in transformers
accept two formats as input:
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like model.fit()
things should “just work” for you - just
pass your inputs and labels in any format that model.fit()
supports! If, however, you want to use the second
format outside of Keras methods like fit()
and predict()
, such as when creating your own layers or models with
the Keras Functional
API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
input_ids
only and nothing else: model(input_ids)
model([input_ids, attention_mask])
or model([input_ids, attention_mask, token_type_ids])
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
Note that when creating models and layers with subclassing then you don’t need to worry about any of this, as you can just pass inputs like you would to any other Python function!
( input_ids: TFModelInputType | None = None attention_mask: tf.Tensor | None = None decoder_input_ids: tf.Tensor | None = None decoder_attention_mask: tf.Tensor | None = None head_mask: tf.Tensor | None = None decoder_head_mask: tf.Tensor | None = None encoder_outputs: tf.Tensor | None = None global_attention_mask: tf.Tensor | None = None past_key_values: Tuple[Tuple[tf.Tensor]] | None = None inputs_embeds: tf.Tensor | None = None decoder_inputs_embeds: tf.Tensor | None = None use_cache: bool | None = None output_attentions: bool | None = None output_hidden_states: bool | None = None return_dict: bool | None = None training: bool = False **kwargs ) → transformers.models.led.modeling_tf_led.TFLEDSeq2SeqModelOutput or tuple(tf.Tensor)
Parameters
tf.Tensor
of shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
tf.Tensor
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
tf.Tensor
of shape (batch_size, target_sequence_length)
, optional) —
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using LedTokenizer
. See PreTrainedTokenizer.encode() and
PreTrainedTokenizer.call() for details.
LED uses the eos_token_id
as the starting token for decoder_input_ids
generation. If past_key_values
is used, optionally only the last decoder_input_ids
have to be input (see past_key_values
).
tf.Tensor
of shape (batch_size, target_sequence_length)
, optional) —
will be made by default and ignore pad tokens. It is not recommended to set this for most use cases. tf.Tensor
of shape (encoder_layers, encoder_attention_heads)
, optional) —
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in [0, 1]
:
tf.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) —
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in [0, 1]
:
tf.Tensor
, optional) —
hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
of shape (batch_size, sequence_length, hidden_size)
is a sequence of Tuple[Tuple[tf.Tensor]]
of length config.n_layers
) —
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that
don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of all
decoder_input_ids
of shape (batch_size, sequence_length)
. bool
, optional, defaults to True
) —
If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see
past_key_values
). Set to False
during training, True
during generation bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True. bool
, optional, defaults to False
) —
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation). Returns
transformers.models.led.modeling_tf_led.TFLEDSeq2SeqModelOutput or tuple(tf.Tensor)
A transformers.models.led.modeling_tf_led.TFLEDSeq2SeqModelOutput or a tuple of tf.Tensor
(if
return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the
configuration (LEDConfig) and inputs.
last_hidden_state (tf.Tensor
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the decoder of the model.
If past_key_values
is used only the last hidden-state of the sequences of shape (batch_size, 1, hidden_size)
is output.
past_key_values (List[tf.Tensor]
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — List of tf.Tensor
of length config.n_layers
, with each tensor of shape (2, batch_size, num_heads, sequence_length, embed_size_per_head)
).
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(tf.Tensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of tf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape
(batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (tf.Tensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(tf.Tensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of tf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape
(batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
encoder_global_attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, x)
, where x
is the number of tokens with global attention mask.
Global attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token with global attention to every token in the sequence.
The TFLEDModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, TFLEDModel
>>> import tensorflow as tf
>>> tokenizer = AutoTokenizer.from_pretrained("allenai/led-base-16384")
>>> model = TFLEDModel.from_pretrained("allenai/led-base-16384")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> outputs = model(inputs)
>>> last_hidden_states = outputs.last_hidden_state
( config *inputs **kwargs )
Parameters
The LED Model with a language modeling head. Can be used for summarization. This model inherits from TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
TensorFlow models and layers in transformers
accept two formats as input:
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like model.fit()
things should “just work” for you - just
pass your inputs and labels in any format that model.fit()
supports! If, however, you want to use the second
format outside of Keras methods like fit()
and predict()
, such as when creating your own layers or models with
the Keras Functional
API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
input_ids
only and nothing else: model(input_ids)
model([input_ids, attention_mask])
or model([input_ids, attention_mask, token_type_ids])
model({"input_ids": input_ids, "token_type_ids": token_type_ids})
Note that when creating models and layers with subclassing then you don’t need to worry about any of this, as you can just pass inputs like you would to any other Python function!
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None decoder_input_ids: np.ndarray | tf.Tensor | None = None decoder_attention_mask: np.ndarray | tf.Tensor | None = None head_mask: np.ndarray | tf.Tensor | None = None decoder_head_mask: np.ndarray | tf.Tensor | None = None encoder_outputs: TFLEDEncoderBaseModelOutput | None = None global_attention_mask: np.ndarray | tf.Tensor | None = None past_key_values: Tuple[Tuple[Union[np.ndarray, tf.Tensor]]] | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None use_cache: bool | None = None output_attentions: bool | None = None output_hidden_states: bool | None = None return_dict: bool | None = None labels: tf.Tensor | None = None training: bool = False ) → transformers.models.led.modeling_tf_led.TFLEDSeq2SeqLMOutput or tuple(tf.Tensor)
Parameters
tf.Tensor
of shape ({0})
) —
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
tf.Tensor
of shape ({0})
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
tf.Tensor
of shape (batch_size, target_sequence_length)
, optional) —
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using LedTokenizer
. See PreTrainedTokenizer.encode() and
PreTrainedTokenizer.call() for details.
LED uses the eos_token_id
as the starting token for decoder_input_ids
generation. If past_key_values
is used, optionally only the last decoder_input_ids
have to be input (see past_key_values
).
tf.Tensor
of shape (batch_size, target_sequence_length)
, optional) —
will be made by default and ignore pad tokens. It is not recommended to set this for most use cases. tf.Tensor
of shape (encoder_layers, encoder_attention_heads)
, optional) —
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in [0, 1]
:
tf.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) —
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in [0, 1]
:
tf.Tensor
, optional) —
hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
of shape (batch_size, sequence_length, hidden_size)
is a sequence of Tuple[Tuple[tf.Tensor]]
of length config.n_layers
) —
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that
don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of all
decoder_input_ids
of shape (batch_size, sequence_length)
. bool
, optional, defaults to True
) —
If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see
past_key_values
). Set to False
during training, True
during generation bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True. bool
, optional, defaults to False
) —
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation). Returns
transformers.models.led.modeling_tf_led.TFLEDSeq2SeqLMOutput or tuple(tf.Tensor)
A transformers.models.led.modeling_tf_led.TFLEDSeq2SeqLMOutput or a tuple of tf.Tensor
(if
return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the
configuration (LEDConfig) and inputs.
loss (tf.Tensor
of shape (1,)
, optional, returned when labels
is provided) — Language modeling loss.
logits (tf.Tensor
of shape (batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (List[tf.Tensor]
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — List of tf.Tensor
of length config.n_layers
, with each tensor of shape (2, batch_size, num_heads, sequence_length, embed_size_per_head)
).
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(tf.Tensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of tf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape
(batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (tf.Tensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(tf.Tensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of tf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape
(batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
encoder_global_attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, x)
, where x
is the number of tokens with global attention mask.
Global attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Those are the attention weights from every token with global attention to every token in the sequence.
The TFLEDForConditionalGeneration forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> from transformers import AutoTokenizer, TFLEDForConditionalGeneration
>>> import tensorflow as tf
>>> mname = "allenai/led-base-16384"
>>> tokenizer = AutoTokenizer.from_pretrained(mname)
>>> TXT = "My friends are <mask> but they eat too many carbs."
>>> model = TFLEDForConditionalGeneration.from_pretrained(mname)
>>> batch = tokenizer([TXT], return_tensors="tf")
>>> logits = model(inputs=batch.input_ids).logits
>>> probs = tf.nn.softmax(logits[0])
>>> # probs[5] is associated with the mask token