The GPTBigCode model was proposed in SantaCoder: don’t reach for the stars! by BigCode. The listed authors are: Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi, Carolyn Jane Anderson, Yangtian Zi, Joel Lamy Poirier, Hailey Schoelkopf, Sergey Troshin, Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas, Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries, Leandro von Werra.
The abstract from the paper is the following:
The BigCode project is an open-scientific collaboration working on the responsible development of large language models for code. This tech report describes the progress of the collaboration until December 2022, outlining the current state of the Personally Identifiable Information (PII) redaction pipeline, the experiments conducted to de-risk the model architecture, and the experiments investigating better preprocessing methods for the training data. We train 1.1B parameter models on the Java, JavaScript, and Python subsets of The Stack and evaluate them on the MultiPL-E text-to-code benchmark. We find that more aggressive filtering of near-duplicates can further boost performance and, surprisingly, that selecting files from repositories with 5+ GitHub stars deteriorates performance significantly. Our best model outperforms previous open-source multilingual code generation models (InCoder-6.7B and CodeGen-Multi-2.7B) in both left-to-right generation and infilling on the Java, JavaScript, and Python portions of MultiPL-E, despite being a substantially smaller model. All models are released under an OpenRAIL license at this https URL.
The model is an optimized GPT2 model with support for Multi-Query Attention.
The main differences compared to GPT2.
gelu_pytorch_tanh
instead of classic gelu
._attn
and _upcast_and_reordered_attn
. Always merge the matmul with scaling. Rename reorder_and_upcast_attn
->attention_softmax_in_fp32
(3, self.num_heads, self.head_dim)
for the QKV tensor with MHA. (prevents an overhead with the merged key and values, but makes the checkpoints incompatible with the original openai-community/gpt2 model).You can read more about the optimizations in the original pull request
First, make sure to install the latest version of Flash Attention 2 to include the sliding window attention feature.
pip install -U flash-attn --no-build-isolation
Make also sure that you have a hardware that is compatible with Flash-Attention 2. Read more about it in the official documentation of flash-attn repository. Make also sure to load your model in half-precision (e.g. `torch.float16“)
To load and run a model using Flash Attention 2, refer to the snippet below:
>>> import torch
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> device = "cuda" # the device to load the model onto
>>> model = AutoModelForCausalLM.from_pretrained("bigcode/gpt_bigcode-santacoder", torch_dtype=torch.float16, attn_implementation="flash_attention_2")
>>> tokenizer = AutoTokenizer.from_pretrained("bigcode/gpt_bigcode-santacoder")
>>> prompt = "def hello_world():"
>>> model_inputs = tokenizer([prompt], return_tensors="pt").to(device)
>>> model.to(device)
>>> generated_ids = model.generate(**model_inputs, max_new_tokens=30, do_sample=False)
>>> tokenizer.batch_decode(generated_ids)[0]
'def hello_world():\n print("hello world")\n\nif __name__ == "__main__":\n print("hello world")\n<|endoftext|>'
Below is a expected speedup diagram that compares pure inference time between the native implementation in transformers using bigcode/starcoder
checkpoint and the Flash Attention 2 version of the model using two different sequence lengths.
( vocab_size = 50257 n_positions = 1024 n_embd = 768 n_layer = 12 n_head = 12 n_inner = None activation_function = 'gelu_pytorch_tanh' resid_pdrop = 0.1 embd_pdrop = 0.1 attn_pdrop = 0.1 layer_norm_epsilon = 1e-05 initializer_range = 0.02 scale_attn_weights = True use_cache = True bos_token_id = 50256 eos_token_id = 50256 attention_softmax_in_fp32 = True scale_attention_softmax_in_fp32 = True multi_query = True **kwargs )
Parameters
int
, optional, defaults to 50257) —
Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the
inputs_ids
passed when calling GPTBigCodeModel. int
, optional, defaults to 1024) —
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048). int
, optional, defaults to 768) —
Dimensionality of the embeddings and hidden states. int
, optional, defaults to 12) —
Number of hidden layers in the Transformer encoder. int
, optional, defaults to 12) —
Number of attention heads for each attention layer in the Transformer encoder. int
, optional, defaults to None) —
Dimensionality of the inner feed-forward layers. None
will set it to 4 times n_embd str
, optional, defaults to "gelu_pytorch_tanh"
) —
Activation function, to be selected in the list ["relu", "silu", "gelu", "tanh", "gelu_new", "gelu_pytorch_tanh"]
. float
, optional, defaults to 0.1) —
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. float
, optional, defaults to 0.1) —
The dropout ratio for the embeddings. float
, optional, defaults to 0.1) —
The dropout ratio for the attention. float
, optional, defaults to 1e-5) —
The epsilon to use in the layer normalization layers. float
, optional, defaults to 0.02) —
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. bool
, optional, defaults to True
) —
Scale attention weights by dividing by sqrt(hidden_size).. bool
, optional, defaults to True
) —
Whether or not the model should return the last key/values attentions (not used by all models). bool
, optional, defaults to True
) —
Whether to call the fused softmax in float32. bool
, optional, defaults to True
) —
Whether to scale the attention softmax in float32. bool
, optional, defaults to True
) —
Whether to use Multi-Query Attion (True
) or Multi-Head Attention (False
). This is the configuration class to store the configuration of a GPTBigCodeModel. It is used to instantiate a GPTBigCode model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the GPTBigCode gpt_bigcode architecture.
Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.
Example:
>>> from transformers import GPTBigCodeConfig, GPTBigCodeModel
>>> # Initializing a GPTBigCode configuration
>>> configuration = GPTBigCodeConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = GPTBigCodeModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
( config )
Parameters
The bare GPT_BIGCODE Model transformer outputting raw hidden-states without any specific head on top.
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( input_ids: Optional = None past_key_values: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions or tuple(torch.FloatTensor)
Parameters
torch.Tensor
of shape (batch_size, input_ids_length)
) —
input_ids_length
= sequence_length
if past_key_values
is None
else
past_key_values[0][0].shape[-2]
(sequence_length
of input past key value states). Indices of input
sequence tokens in the vocabulary.
If past_key_values
is used, only input_ids
that do not have their past calculated should be passed as
input_ids
.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
Tuple[torch.Tensor]
of length config.n_layers
) —
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
past_key_values
output below). Can be used to speed up sequential decoding. The input_ids
which have
their past given to this model should not be passed as input_ids
as they have already been computed. torch.Tensor
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
If past_key_values
is used, attention_mask
needs to contain the masking strategy that was used for
past_key_values
. In other words, the attention_mask
always has to have the length:
len(past_key_values) + len(input_ids)
torch.Tensor
of shape (batch_size, input_ids_length)
, optional) —
Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]
:
torch.Tensor
of shape (batch_size, sequence_length)
, optional) —
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
torch.Tensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) —
Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]
:
torch.Tensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert input_ids
indices into associated vectors than the
model’s internal embedding lookup matrix.
If past_key_values
is used, optionally only the last inputs_embeds
have to be input (see
past_key_values
).
bool
, optional) —
If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see
past_key_values
). bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. Returns
transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions or tuple(torch.FloatTensor)
A transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (GPTBigCodeConfig) and inputs.
last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model.
If past_key_values
is used only the last hidden-state of the sequences of shape (batch_size, 1, hidden_size)
is output.
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and optionally if
config.is_encoder_decoder=True
2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
config.is_encoder_decoder=True
in the cross-attention blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
and config.add_cross_attention=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
The GPTBigCodeModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, GPTBigCodeModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("bigcode/gpt_bigcode-santacoder")
>>> model = GPTBigCodeModel.from_pretrained("bigcode/gpt_bigcode-santacoder")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
( config )
Parameters
The GPT_BIGCODE Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings).
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( input_ids: Optional = None past_key_values: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)
Parameters
torch.Tensor
of shape (batch_size, input_ids_length)
) —
input_ids_length
= sequence_length
if past_key_values
is None
else
past_key_values[0][0].shape[-2]
(sequence_length
of input past key value states). Indices of input
sequence tokens in the vocabulary.
If past_key_values
is used, only input_ids
that do not have their past calculated should be passed as
input_ids
.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
Tuple[torch.Tensor]
of length config.n_layers
) —
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
past_key_values
output below). Can be used to speed up sequential decoding. The input_ids
which have
their past given to this model should not be passed as input_ids
as they have already been computed. torch.Tensor
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
If past_key_values
is used, attention_mask
needs to contain the masking strategy that was used for
past_key_values
. In other words, the attention_mask
always has to have the length:
len(past_key_values) + len(input_ids)
torch.Tensor
of shape (batch_size, input_ids_length)
, optional) —
Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]
:
torch.Tensor
of shape (batch_size, sequence_length)
, optional) —
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
torch.Tensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) —
Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]
:
torch.Tensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert input_ids
indices into associated vectors than the
model’s internal embedding lookup matrix.
If past_key_values
is used, optionally only the last inputs_embeds
have to be input (see
past_key_values
).
bool
, optional) —
If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see
past_key_values
). bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. torch.Tensor
of shape (batch_size, sequence_length)
, optional) —
Labels for language modeling. Note that the labels are shifted inside the model, i.e. you can set
labels = input_ids
Indices are selected in [-100, 0, ..., config.vocab_size]
All labels set to -100
are ignored (masked), the loss is only computed for labels in [0, ..., config.vocab_size]
Returns
transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)
A transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (GPTBigCodeConfig) and inputs.
loss (torch.FloatTensor
of shape (1,)
, optional, returned when labels
is provided) — Language modeling loss (for next-token prediction).
logits (torch.FloatTensor
of shape (batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Cross attentions weights after the attention softmax, used to compute the weighted average in the cross-attention heads.
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of torch.FloatTensor
tuples of length config.n_layers
, with each tuple containing the cached key,
value states of the self-attention and the cross-attention layers if model is used in encoder-decoder
setting. Only relevant if config.is_decoder = True
.
Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
past_key_values
input) to speed up sequential decoding.
The GPTBigCodeForCausalLM forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> import torch
>>> from transformers import AutoTokenizer, GPTBigCodeForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("bigcode/gpt_bigcode-santacoder")
>>> model = GPTBigCodeForCausalLM.from_pretrained("bigcode/gpt_bigcode-santacoder")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs, labels=inputs["input_ids"])
>>> loss = outputs.loss
>>> logits = outputs.logits
( config )
Parameters
The GPTBigCode Model transformer with a sequence classification head on top (linear layer).
GPTBigCodeForSequenceClassification uses the last token in order to do the classification, as other causal models (e.g. GPT-1) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
pad_token_id
is defined in the configuration, it finds the last token that is not a padding token in each row. If
no pad_token_id
is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when inputs_embeds
are passed instead of input_ids
, it does the same (take the last value in
each row of the batch).
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( input_ids: Optional = None past_key_values: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None )
Parameters
torch.Tensor
of shape (batch_size, input_ids_length)
) —
input_ids_length
= sequence_length
if past_key_values
is None
else
past_key_values[0][0].shape[-2]
(sequence_length
of input past key value states). Indices of input
sequence tokens in the vocabulary.
If past_key_values
is used, only input_ids
that do not have their past calculated should be passed as
input_ids
.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
Tuple[torch.Tensor]
of length config.n_layers
) —
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
past_key_values
output below). Can be used to speed up sequential decoding. The input_ids
which have
their past given to this model should not be passed as input_ids
as they have already been computed. torch.Tensor
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
If past_key_values
is used, attention_mask
needs to contain the masking strategy that was used for
past_key_values
. In other words, the attention_mask
always has to have the length:
len(past_key_values) + len(input_ids)
torch.Tensor
of shape (batch_size, input_ids_length)
, optional) —
Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]
:
torch.Tensor
of shape (batch_size, sequence_length)
, optional) —
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
torch.Tensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) —
Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]
:
torch.Tensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert input_ids
indices into associated vectors than the
model’s internal embedding lookup matrix.
If past_key_values
is used, optionally only the last inputs_embeds
have to be input (see
past_key_values
).
bool
, optional) —
If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see
past_key_values
). bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. torch.Tensor
of shape (batch_size,)
, optional) —
Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]
. If config.num_labels == 1
a regression loss is computed (Mean-Square loss), If
config.num_labels > 1
a classification loss is computed (Cross-Entropy). The GPTBigCodeForSequenceClassification forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
( config )
Parameters
GPT_BIGCODE Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( input_ids: Optional = None past_key_values: Optional = None attention_mask: Optional = None token_type_ids: Optional = None position_ids: Optional = None head_mask: Optional = None inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None )
Parameters
torch.Tensor
of shape (batch_size, input_ids_length)
) —
input_ids_length
= sequence_length
if past_key_values
is None
else
past_key_values[0][0].shape[-2]
(sequence_length
of input past key value states). Indices of input
sequence tokens in the vocabulary.
If past_key_values
is used, only input_ids
that do not have their past calculated should be passed as
input_ids
.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
Tuple[torch.Tensor]
of length config.n_layers
) —
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
past_key_values
output below). Can be used to speed up sequential decoding. The input_ids
which have
their past given to this model should not be passed as input_ids
as they have already been computed. torch.Tensor
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
If past_key_values
is used, attention_mask
needs to contain the masking strategy that was used for
past_key_values
. In other words, the attention_mask
always has to have the length:
len(past_key_values) + len(input_ids)
torch.Tensor
of shape (batch_size, input_ids_length)
, optional) —
Segment token indices to indicate first and second portions of the inputs. Indices are selected in [0, 1]
:
torch.Tensor
of shape (batch_size, sequence_length)
, optional) —
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1]
.
torch.Tensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) —
Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]
:
torch.Tensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert input_ids
indices into associated vectors than the
model’s internal embedding lookup matrix.
If past_key_values
is used, optionally only the last inputs_embeds
have to be input (see
past_key_values
).
bool
, optional) —
If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see
past_key_values
). bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. torch.Tensor
of shape (batch_size, sequence_length)
, optional) —
Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]
. If config.num_labels == 1
a regression loss is computed (Mean-Square loss), If
config.num_labels > 1
a classification loss is computed (Cross-Entropy). The GPTBigCodeForTokenClassification forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.