The EncoderDecoderModel can be used to initialize a sequence-to-sequence model with any pretrained autoencoding model as the encoder and any pretrained autoregressive model as the decoder.
The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation tasks was shown in Leveraging Pre-trained Checkpoints for Sequence Generation Tasks by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
After such an EncoderDecoderModel has been trained/fine-tuned, it can be saved/loaded just like any other models (see the examples for more information).
An application of this architecture could be to leverage two pretrained BertModel as the encoder and decoder for a summarization model as was shown in: Text Summarization with Pretrained Encoders by Yang Liu and Mirella Lapata.
EncoderDecoderModel can be randomly initialized from an encoder and a decoder config. In the following example, we show how to do this using the default BertModel configuration for the encoder and the default BertForCausalLM
configuration for the decoder.
>>> from transformers import BertConfig, EncoderDecoderConfig, EncoderDecoderModel
>>> config_encoder = BertConfig()
>>> config_decoder = BertConfig()
>>> config = EncoderDecoderConfig.from_encoder_decoder_configs(config_encoder, config_decoder)
>>> model = EncoderDecoderModel(config=config)
EncoderDecoderModel can be initialized from a pretrained encoder checkpoint and a pretrained decoder checkpoint. Note that any pretrained auto-encoding model, e.g. BERT, can serve as the encoder and both pretrained auto-encoding models, e.g. BERT, pretrained causal language models, e.g. GPT2, as well as the pretrained decoder part of sequence-to-sequence models, e.g. decoder of BART, can be used as the decoder.
Depending on which architecture you choose as the decoder, the cross-attention layers might be randomly initialized.
Initializing EncoderDecoderModel from a pretrained encoder and decoder checkpoint requires the model to be fine-tuned on a downstream task, as has been shown in the Warm-starting-encoder-decoder blog post.
To do so, the EncoderDecoderModel
class provides a EncoderDecoderModel.from_encoder_decoder_pretrained() method.
>>> from transformers import EncoderDecoderModel, BertTokenizer
>>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = EncoderDecoderModel.from_encoder_decoder_pretrained("google-bert/bert-base-uncased", "google-bert/bert-base-uncased")
To load fine-tuned checkpoints of the EncoderDecoderModel
class, EncoderDecoderModel provides the from_pretrained(...)
method just like any other model architecture in Transformers.
To perform inference, one uses the generate
method, which allows to autoregressively generate text. This method supports various forms of decoding, such as greedy, beam search and multinomial sampling.
>>> from transformers import AutoTokenizer, EncoderDecoderModel
>>> # load a fine-tuned seq2seq model and corresponding tokenizer
>>> model = EncoderDecoderModel.from_pretrained("patrickvonplaten/bert2bert_cnn_daily_mail")
>>> tokenizer = AutoTokenizer.from_pretrained("patrickvonplaten/bert2bert_cnn_daily_mail")
>>> # let's perform inference on a long piece of text
>>> ARTICLE_TO_SUMMARIZE = (
... "PG&E stated it scheduled the blackouts in response to forecasts for high winds "
... "amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were "
... "scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow."
... )
>>> input_ids = tokenizer(ARTICLE_TO_SUMMARIZE, return_tensors="pt").input_ids
>>> # autoregressively generate summary (uses greedy decoding by default)
>>> generated_ids = model.generate(input_ids)
>>> generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
>>> print(generated_text)
nearly 800 thousand customers were affected by the shutoffs. the aim is to reduce the risk of wildfires. nearly 800, 000 customers were expected to be affected by high winds amid dry conditions. pg & e said it scheduled the blackouts to last through at least midday tomorrow.
TFEncoderDecoderModel.from_pretrained() currently doesn’t support initializing the model from a
pytorch checkpoint. Passing from_pt=True
to this method will throw an exception. If there are only pytorch
checkpoints for a particular encoder-decoder model, a workaround is:
>>> # a workaround to load from pytorch checkpoint
>>> from transformers import EncoderDecoderModel, TFEncoderDecoderModel
>>> _model = EncoderDecoderModel.from_pretrained("patrickvonplaten/bert2bert-cnn_dailymail-fp16")
>>> _model.encoder.save_pretrained("./encoder")
>>> _model.decoder.save_pretrained("./decoder")
>>> model = TFEncoderDecoderModel.from_encoder_decoder_pretrained(
... "./encoder", "./decoder", encoder_from_pt=True, decoder_from_pt=True
... )
>>> # This is only for copying some specific attributes of this particular model.
>>> model.config = _model.config
Once the model is created, it can be fine-tuned similar to BART, T5 or any other encoder-decoder model.
As you can see, only 2 inputs are required for the model in order to compute a loss: input_ids
(which are the
input_ids
of the encoded input sequence) and labels
(which are the input_ids
of the encoded
target sequence).
>>> from transformers import BertTokenizer, EncoderDecoderModel
>>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = EncoderDecoderModel.from_encoder_decoder_pretrained("google-bert/bert-base-uncased", "google-bert/bert-base-uncased")
>>> model.config.decoder_start_token_id = tokenizer.cls_token_id
>>> model.config.pad_token_id = tokenizer.pad_token_id
>>> input_ids = tokenizer(
... "The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side.During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest man-made structure in the world, a title it held for 41 years until the Chrysler Building in New York City was finished in 1930. It was the first structure to reach a height of 300 metres. Due to the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the Chrysler Building by 5.2 metres (17 ft).Excluding transmitters, the Eiffel Tower is the second tallest free-standing structure in France after the Millau Viaduct.",
... return_tensors="pt",
... ).input_ids
>>> labels = tokenizer(
... "the eiffel tower surpassed the washington monument to become the tallest structure in the world. it was the first structure to reach a height of 300 metres in paris in 1930. it is now taller than the chrysler building by 5. 2 metres ( 17 ft ) and is the second tallest free - standing structure in paris.",
... return_tensors="pt",
... ).input_ids
>>> # the forward function automatically creates the correct decoder_input_ids
>>> loss = model(input_ids=input_ids, labels=labels).loss
Detailed colab for training.
This model was contributed by thomwolf. This model’s TensorFlow and Flax versions were contributed by ydshieh.
( **kwargs )
Parameters
EncoderDecoderConfig is the configuration class to store the configuration of a EncoderDecoderModel. It is used to instantiate an Encoder Decoder model according to the specified arguments, defining the encoder and decoder configs.
Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.
Examples:
>>> from transformers import BertConfig, EncoderDecoderConfig, EncoderDecoderModel
>>> # Initializing a BERT google-bert/bert-base-uncased style configuration
>>> config_encoder = BertConfig()
>>> config_decoder = BertConfig()
>>> config = EncoderDecoderConfig.from_encoder_decoder_configs(config_encoder, config_decoder)
>>> # Initializing a Bert2Bert model (with random weights) from the google-bert/bert-base-uncased style configurations
>>> model = EncoderDecoderModel(config=config)
>>> # Accessing the model configuration
>>> config_encoder = model.config.encoder
>>> config_decoder = model.config.decoder
>>> # set decoder config to causal lm
>>> config_decoder.is_decoder = True
>>> config_decoder.add_cross_attention = True
>>> # Saving the model, including its configuration
>>> model.save_pretrained("my-model")
>>> # loading model and config from pretrained folder
>>> encoder_decoder_config = EncoderDecoderConfig.from_pretrained("my-model")
>>> model = EncoderDecoderModel.from_pretrained("my-model", config=encoder_decoder_config)
( encoder_config: PretrainedConfig decoder_config: PretrainedConfig **kwargs ) → EncoderDecoderConfig
Instantiate a EncoderDecoderConfig (or a derived class) from a pre-trained encoder model configuration and decoder model configuration.
( config: Optional = None encoder: Optional = None decoder: Optional = None )
Parameters
This class can be used to initialize a sequence-to-sequence model with any pretrained autoencoding model as the encoder and any pretrained autoregressive model as the decoder. The encoder is loaded via from_pretrained() function and the decoder is loaded via from_pretrained() function. Cross-attention layers are automatically added to the decoder and should be fine-tuned on a downstream generative task, like summarization.
The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation tasks was shown in Leveraging Pre-trained Checkpoints for Sequence Generation Tasks by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu.
After such an Encoder Decoder model has been trained/fine-tuned, it can be saved/loaded just like any other models (see the examples for more information).
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
EncoderDecoderModel is a generic model class that will be instantiated as a transformer architecture with one of the base model classes of the library as encoder and another one as decoder when created with the :meth~transformers.AutoModel.from_pretrained class method for the encoder and :meth~transformers.AutoModelForCausalLM.from_pretrained class method for the decoder.
( input_ids: Optional = None attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None encoder_outputs: Optional = None past_key_values: Tuple = None inputs_embeds: Optional = None decoder_inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None **kwargs ) → transformers.modeling_outputs.Seq2SeqLMOutput or tuple(torch.FloatTensor)
Parameters
torch.LongTensor
of shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using PreTrainedTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
torch.FloatTensor
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
torch.LongTensor
of shape (batch_size, target_sequence_length)
, optional) —
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using PreTrainedTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
If past_key_values
is used, optionally only the last decoder_input_ids
have to be input (see
past_key_values
).
For training, decoder_input_ids
are automatically created by the model by shifting the labels
to the
right, replacing -100 by the pad_token_id
and prepending them with the decoder_start_token_id
.
torch.BoolTensor
of shape (batch_size, target_sequence_length)
, optional) —
Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also
be used by default. tuple(torch.FloatTensor)
, optional) —
This tuple must consist of (last_hidden_state
, optional: hidden_states
, optional: attentions
)
last_hidden_state
(torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
) is a tensor
of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the
decoder. tuple(tuple(torch.FloatTensor))
of length config.n_layers
with each tuple having 4 tensors of shape (batch_size, num_heads, sequence_length - 1, embed_size_per_head)
) —
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that
don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of all
decoder_input_ids
of shape (batch_size, sequence_length)
.
torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert input_ids
indices into associated vectors than the
model’s internal embedding lookup matrix. torch.FloatTensor
of shape (batch_size, target_sequence_length, hidden_size)
, optional) —
Optionally, instead of passing decoder_input_ids
you can choose to directly pass an embedded
representation. This is useful if you want more control over how to convert decoder_input_ids
indices
into associated vectors than the model’s internal embedding lookup matrix. torch.LongTensor
of shape (batch_size, sequence_length)
, optional) —
Labels for computing the masked language modeling loss for the decoder. Indices should be in [-100, 0, ..., config.vocab_size]
(see input_ids
docstring) Tokens with indices set to -100
are ignored
(masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size]
bool
, optional) —
If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see
past_key_values
). bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
If set to True
, the model will return a ~utils.Seq2SeqLMOutput
instead of a plain tuple. **encoder_kwargs
for the encoder forward function.**decoder_kwargs
for the decoder forward function.Returns
transformers.modeling_outputs.Seq2SeqLMOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.Seq2SeqLMOutput or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (EncoderDecoderConfig) and inputs.
loss (torch.FloatTensor
of shape (1,)
, optional, returned when labels
is provided) — Language modeling loss.
logits (torch.FloatTensor
of shape (batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape
(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
The EncoderDecoderModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> from transformers import EncoderDecoderModel, BertTokenizer
>>> import torch
>>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> model = EncoderDecoderModel.from_encoder_decoder_pretrained(
... "google-bert/bert-base-uncased", "google-bert/bert-base-uncased"
... ) # initialize Bert2Bert from pre-trained checkpoints
>>> # training
>>> model.config.decoder_start_token_id = tokenizer.cls_token_id
>>> model.config.pad_token_id = tokenizer.pad_token_id
>>> model.config.vocab_size = model.config.decoder.vocab_size
>>> input_ids = tokenizer("This is a really long text", return_tensors="pt").input_ids
>>> labels = tokenizer("This is the corresponding summary", return_tensors="pt").input_ids
>>> outputs = model(input_ids=input_ids, labels=labels)
>>> loss, logits = outputs.loss, outputs.logits
>>> # save and load from pretrained
>>> model.save_pretrained("bert2bert")
>>> model = EncoderDecoderModel.from_pretrained("bert2bert")
>>> # generation
>>> generated = model.generate(input_ids)
( encoder_pretrained_model_name_or_path: str = None decoder_pretrained_model_name_or_path: str = None *model_args **kwargs )
Parameters
str
, optional) —
Information necessary to initiate the encoder. Can be either:
./my_model_directory/
../tf_model/model.ckpt.index
). In
this case, from_tf
should be set to True
and a configuration object should be provided as
config
argument. This loading path is slower than converting the TensorFlow checkpoint in a
PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.str
, optional, defaults to None
) —
Information necessary to initiate the decoder. Can be either:
./my_model_directory/
../tf_model/model.ckpt.index
). In
this case, from_tf
should be set to True
and a configuration object should be provided as
config
argument. This loading path is slower than converting the TensorFlow checkpoint in a
PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.__init__
method. output_attentions=True
).
Behaves differently depending on whether a config
is provided or automatically loaded.
Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model checkpoints.
The model is set in evaluation mode by default using model.eval()
(Dropout modules are deactivated). To train
the model, you need to first set it back in training mode with model.train()
.
Example:
>>> from transformers import EncoderDecoderModel
>>> # initialize a bert2bert from two pretrained BERT models. Note that the cross-attention layers will be randomly initialized
>>> model = EncoderDecoderModel.from_encoder_decoder_pretrained("google-bert/bert-base-uncased", "google-bert/bert-base-uncased")
>>> # saving model after fine-tuning
>>> model.save_pretrained("./bert2bert")
>>> # load fine-tuned model
>>> model = EncoderDecoderModel.from_pretrained("./bert2bert")
( config: Optional[PretrainedConfig] = None encoder: Optional[TFPreTrainedModel] = None decoder: Optional[TFPreTrainedModel] = None )
Parameters
This class can be used to initialize a sequence-to-sequence model with any pretrained autoencoding model as the encoder and any pretrained autoregressive model as the decoder. The encoder is loaded via from_pretrained() function and the decoder is loaded via from_pretrained() function. Cross-attention layers are automatically added to the decoder and should be fine-tuned on a downstream generative task, like summarization.
The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation tasks was shown in Leveraging Pre-trained Checkpoints for Sequence Generation Tasks by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu.
After such an Encoder Decoder model has been trained/fine-tuned, it can be saved/loaded just like any other models (see the examples for more information).
This model inherits from TFPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a keras.Model subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior.
TFEncoderDecoderModel is a generic model class that will be instantiated as a transformer architecture with one of the base model classes of the library as encoder and another one as decoder when created with the from_pretrained() class method for the encoder and from_pretrained() class method for the decoder.
( input_ids: TFModelInputType | None = None attention_mask: np.ndarray | tf.Tensor | None = None decoder_input_ids: np.ndarray | tf.Tensor | None = None decoder_attention_mask: np.ndarray | tf.Tensor | None = None encoder_outputs: np.ndarray | tf.Tensor | None = None past_key_values: Tuple[Tuple[tf.Tensor]] | None = None inputs_embeds: np.ndarray | tf.Tensor | None = None decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None labels: np.ndarray | tf.Tensor | None = None use_cache: Optional[bool] = None output_attentions: Optional[bool] = None output_hidden_states: Optional[bool] = None return_dict: Optional[bool] = None training: bool = False **kwargs ) → transformers.modeling_tf_outputs.TFSeq2SeqLMOutput or tuple(tf.Tensor)
Parameters
np.ndarray
, tf.Tensor
, List[tf.Tensor]
`Dict[str, tf.Tensor]
or Dict[str, np.ndarray]
and each example must have the shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using PreTrainedTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
np.ndarray
or tf.Tensor
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
np.ndarray
or tf.Tensor
of shape (batch_size, target_sequence_length)
, optional) —
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using PreTrainedTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
If past_key_values
is used, optionally only the last decoder_input_ids
have to be input (see
past_key_values
).
Provide for sequence to sequence training to the decoder. Indices can be obtained using PreTrainedTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
np.ndarray
or tf.Tensor
of shape (batch_size, target_sequence_length)
, optional) —
Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also
be used by default. tuple(tuple(tf.Tensor)
, optional) —
This tuple must consist of (last_hidden_state
, optional: hidden_states
, optional: attentions
)
last_hidden_state
(tf.Tensor
of shape (batch_size, sequence_length, hidden_size)
) is a tensor of hidden-states at the output
of the last layer of the encoder. Used in the cross-attention of the decoder. tuple(tuple(tf.Tensor))
of length config.n_layers
with each tuple having 4 tensors of shape (batch_size, num_heads, sequence_length - 1, embed_size_per_head)
) —
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that
don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of all
decoder_input_ids
of shape (batch_size, sequence_length)
.
np.ndarray
or tf.Tensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert input_ids
indices into associated vectors than the
model’s internal embedding lookup matrix. np.ndarray
or tf.Tensor
of shape (batch_size, target_sequence_length, hidden_size)
, optional) —
Optionally, instead of passing decoder_input_ids
you can choose to directly pass an embedded
representation. This is useful if you want more control over how to convert decoder_input_ids
indices
into associated vectors than the model’s internal embedding lookup matrix. np.ndarray
or tf.Tensor
of shape (batch_size, sequence_length)
, optional) —
Labels for computing the masked language modeling loss for the decoder. Indices should be in [-100, 0, ..., config.vocab_size]
(see input_ids
docstring) Tokens with indices set to -100
are ignored
(masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size]
bool
, optional) —
If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see
past_key_values
). bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
If set to True
, the model will return a ~utils.Seq2SeqLMOutput
instead of a plain tuple. bool
, optional, defaults to False
) —
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation). **encoder_kwargs
for the encoder forward function.Returns
transformers.modeling_tf_outputs.TFSeq2SeqLMOutput or tuple(tf.Tensor)
A transformers.modeling_tf_outputs.TFSeq2SeqLMOutput or a tuple of tf.Tensor
(if
return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the
configuration (EncoderDecoderConfig) and inputs.
loss (tf.Tensor
of shape (n,)
, optional, where n is the number of non-masked labels, returned when labels
is provided) — Language modeling loss.
logits (tf.Tensor
of shape (batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (List[tf.Tensor]
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — List of tf.Tensor
of length config.n_layers
, with each tensor of shape (2, batch_size, num_heads, sequence_length, embed_size_per_head)
).
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(tf.Tensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of tf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape
(batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (tf.Tensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(tf.Tensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of tf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape
(batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (tuple(tf.Tensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of tf.Tensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
The TFEncoderDecoderModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> from transformers import TFEncoderDecoderModel, BertTokenizer
>>> # initialize a bert2gpt2 from a pretrained BERT and GPT2 models. Note that the cross-attention layers will be randomly initialized
>>> model = TFEncoderDecoderModel.from_encoder_decoder_pretrained("google-bert/bert-base-cased", "openai-community/gpt2")
>>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
>>> # forward
>>> input_ids = tokenizer.encode(
... "Hello, my dog is cute", add_special_tokens=True, return_tensors="tf"
... ) # Batch size 1
>>> outputs = model(input_ids=input_ids, decoder_input_ids=input_ids)
>>> # training
>>> outputs = model(input_ids=input_ids, decoder_input_ids=input_ids, labels=input_ids)
>>> loss, logits = outputs.loss, outputs.logits
>>> # save and load from pretrained
>>> model.save_pretrained("bert2gpt2")
>>> model = TFEncoderDecoderModel.from_pretrained("bert2gpt2")
>>> # generation
>>> generated = model.generate(input_ids, decoder_start_token_id=model.config.decoder.bos_token_id)
( encoder_pretrained_model_name_or_path: str = None decoder_pretrained_model_name_or_path: str = None *model_args **kwargs )
Parameters
str
, optional) —
Information necessary to initiate the encoder. Can be either:
./my_model_directory/
../pt_model/
). In this case,
encoder_from_pt
should be set to True
.str
, optional, defaults to None
) —
Information necessary to initiate the decoder. Can be either:
./my_model_directory/
../pt_model/
). In this case,
decoder_from_pt
should be set to True
.__init__
method. output_attentions=True
).
Behaves differently depending on whether a config
is provided or automatically loaded.
Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model checkpoints.
Example:
>>> from transformers import TFEncoderDecoderModel
>>> # initialize a bert2gpt2 from two pretrained BERT models. Note that the cross-attention layers will be randomly initialized
>>> model = TFEncoderDecoderModel.from_encoder_decoder_pretrained("google-bert/bert-base-uncased", "openai-community/gpt2")
>>> # saving model after fine-tuning
>>> model.save_pretrained("./bert2gpt2")
>>> # load fine-tuned model
>>> model = TFEncoderDecoderModel.from_pretrained("./bert2gpt2")
( config: EncoderDecoderConfig input_shape: Optional = None seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
Parameters
jax.numpy.dtype
, optional, defaults to jax.numpy.float32
) —
The data type of the computation. Can be one of jax.numpy.float32
, jax.numpy.float16
(on GPUs) and
jax.numpy.bfloat16
(on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
specified all the computation will be performed with the given dtype
.
Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.
If you wish to change the dtype of the model parameters, see to_fp16() and to_bf16().
This class can be used to initialize a sequence-to-sequence model with any pretrained autoencoding model as the encoder and any pretrained autoregressive model as the decoder. The encoder is loaded via from_pretrained() function and the decoder is loaded via from_pretrained() function. Cross-attention layers are automatically added to the decoder and should be fine-tuned on a downstream generative task, like summarization.
The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation tasks was shown in Leveraging Pre-trained Checkpoints for Sequence Generation Tasks by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu.
After such an Encoder Decoder model has been trained/fine-tuned, it can be saved/loaded just like any other models (see the examples for more information).
This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a Flax Linen flax.nn.Module subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
FlaxEncoderDecoderModel is a generic model class that will be instantiated as a transformer architecture with the module (flax.nn.Module) of one of the base model classes of the library as encoder module and another one as decoder module when created with the :meth~transformers.FlaxAutoModel.from_pretrained class method for the encoder and :meth~transformers.FlaxAutoModelForCausalLM.from_pretrained class method for the decoder.
( input_ids: Array attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None position_ids: Optional = None decoder_position_ids: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None train: bool = False params: dict = None dropout_rng: PRNGKey = None ) → transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutput or tuple(torch.FloatTensor)
Parameters
jnp.ndarray
of shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using PreTrainedTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
jnp.ndarray
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
jnp.ndarray
of shape (batch_size, target_sequence_length)
, optional) —
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using PreTrainedTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
For sequence to sequence training, decoder_input_ids
should be provided. decoder_input_ids
should be
created outside of the model by shifting the labels
to the right, replacing -100 by the pad_token_id
and prepending them with the decoder_start_token_id
.
jnp.ndarray
of shape (batch_size, target_sequence_length)
, optional) —
Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also
be used by default. numpy.ndarray
of shape (batch_size, sequence_length)
, optional) —
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.encoder.max_position_embeddings - 1]
. numpy.ndarray
of shape (batch_size, sequence_length)
, optional) —
Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the
range [0, config.decoder.max_position_embeddings - 1]
. bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
If set to True
, the model will return a ~utils.FlaxSeq2SeqLMOutput
instead of a plain tuple. Returns
transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutput or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxSeq2SeqLMOutput or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (EncoderDecoderConfig) and inputs.
logits (jnp.ndarray
of shape (batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (tuple(tuple(jnp.ndarray))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(jnp.ndarray)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape
(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape
(batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (jnp.ndarray
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(jnp.ndarray)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of jnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape
(batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (tuple(jnp.ndarray)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of jnp.ndarray
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
The FlaxEncoderDecoderModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Examples:
>>> from transformers import FlaxEncoderDecoderModel, BertTokenizer, GPT2Tokenizer
>>> # load a fine-tuned bert2gpt2 model
>>> model = FlaxEncoderDecoderModel.from_pretrained("patrickvonplaten/bert2gpt2-cnn_dailymail-fp16")
>>> # load input & output tokenizer
>>> tokenizer_input = BertTokenizer.from_pretrained("google-bert/bert-base-cased")
>>> tokenizer_output = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
>>> article = '''Sigma Alpha Epsilon is under fire for a video showing party-bound fraternity members
>>> singing a racist chant. SAE's national chapter suspended the students,
>>> but University of Oklahoma President David Boren took it a step further,
>>> saying the university's affiliation with the fraternity is permanently done.'''
>>> input_ids = tokenizer_input(article, add_special_tokens=True, return_tensors="np").input_ids
>>> # use GPT2's eos_token as the pad as well as eos token
>>> model.config.eos_token_id = model.config.decoder.eos_token_id
>>> model.config.pad_token_id = model.config.eos_token_id
>>> sequences = model.generate(input_ids, num_beams=4, max_length=12).sequences
>>> summary = tokenizer_output.batch_decode(sequences, skip_special_tokens=True)[0]
>>> assert summary == "SAS Alpha Epsilon suspended Sigma Alpha Epsilon members"
( encoder_pretrained_model_name_or_path: Union = None decoder_pretrained_model_name_or_path: Union = None *model_args **kwargs )
Parameters
Union[str, os.PathLike]
, optional) —
Information necessary to initiate the encoder. Can be either:
./my_model_directory/
.Union[str, os.PathLike]
, optional, defaults to None
) —
Information necessary to initiate the decoder. Can be either:
./my_model_directory/
.__init__
method. output_attentions=True
).
Behaves differently depending on whether a config
is provided or automatically loaded.
Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model checkpoints.
Example:
>>> from transformers import FlaxEncoderDecoderModel
>>> # initialize a bert2gpt2 from pretrained BERT and GPT2 models. Note that the cross-attention layers will be randomly initialized
>>> model = FlaxEncoderDecoderModel.from_encoder_decoder_pretrained("google-bert/bert-base-cased", "openai-community/gpt2")
>>> # saving model after fine-tuning
>>> model.save_pretrained("./bert2gpt2")
>>> # load fine-tuned model
>>> model = FlaxEncoderDecoderModel.from_pretrained("./bert2gpt2")