The BioGPT model was proposed in BioGPT: generative pre-trained transformer for biomedical text generation and mining by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu. BioGPT is a domain-specific generative pre-trained Transformer language model for biomedical text generation and mining. BioGPT follows the Transformer language model backbone, and is pre-trained on 15M PubMed abstracts from scratch.
The abstract from the paper is the following:
Pre-trained language models have attracted increasing attention in the biomedical domain, inspired by their great success in the general natural language domain. Among the two main branches of pre-trained language models in the general language domain, i.e. BERT (and its variants) and GPT (and its variants), the first one has been extensively studied in the biomedical domain, such as BioBERT and PubMedBERT. While they have achieved great success on a variety of discriminative downstream biomedical tasks, the lack of generation ability constrains their application scope. In this paper, we propose BioGPT, a domain-specific generative Transformer language model pre-trained on large-scale biomedical literature. We evaluate BioGPT on six biomedical natural language processing tasks and demonstrate that our model outperforms previous models on most tasks. Especially, we get 44.98%, 38.42% and 40.76% F1 score on BC5CDR, KD-DTI and DDI end-to-end relation extraction tasks, respectively, and 78.2% accuracy on PubMedQA, creating a new record. Our case study on text generation further demonstrates the advantage of BioGPT on biomedical literature to generate fluent descriptions for biomedical terms.
This model was contributed by kamalkraj. The original code can be found here.
past_key_values
(for PyTorch) as input, which is the previously computed key/value attention pairs. Using this (past_key_values or past) value prevents the model from re-computing pre-computed values in the context of text generation. For PyTorch, see past_key_values argument of the BioGptForCausalLM.forward() method for more information on its usage.( vocab_size = 42384 hidden_size = 1024 num_hidden_layers = 24 num_attention_heads = 16 intermediate_size = 4096 hidden_act = 'gelu' hidden_dropout_prob = 0.1 attention_probs_dropout_prob = 0.1 max_position_embeddings = 1024 initializer_range = 0.02 layer_norm_eps = 1e-12 scale_embedding = True use_cache = True layerdrop = 0.0 activation_dropout = 0.0 pad_token_id = 1 bos_token_id = 0 eos_token_id = 2 **kwargs )
Parameters
int
, optional, defaults to 42384) —
Vocabulary size of the BioGPT model. Defines the number of different tokens that can be represented by the
inputs_ids
passed when calling BioGptModel. int
, optional, defaults to 1024) —
Dimension of the encoder layers and the pooler layer. int
, optional, defaults to 24) —
Number of hidden layers in the Transformer encoder. int
, optional, defaults to 16) —
Number of attention heads for each attention layer in the Transformer encoder. int
, optional, defaults to 4096) —
Dimension of the “intermediate” (i.e., feed-forward) layer in the Transformer encoder. str
or function
, optional, defaults to "gelu"
) —
The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu"
,
"relu"
, "selu"
and "gelu_new"
are supported. float
, optional, defaults to 0.1) —
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. float
, optional, defaults to 0.1) —
The dropout ratio for the attention probabilities. int
, optional, defaults to 1024) —
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048). float
, optional, defaults to 0.02) —
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. float
, optional, defaults to 1e-12) —
The epsilon used by the layer normalization layers. bool
, optional, defaults to True
) —
Scale embeddings by diving by sqrt(d_model). bool
, optional, defaults to True
) —
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if config.is_decoder=True
. float
, optional, defaults to 0.0) —
Please refer to the paper about LayerDrop: https://arxiv.org/abs/1909.11556 for further details float
, optional, defaults to 0.0) —
The dropout ratio for activations inside the fully connected layer. int
, optional, defaults to 1) —
Padding token id. int
, optional, defaults to 0) —
Beginning of stream token id. int
, optional, defaults to 2) —
End of stream token id. This is the configuration class to store the configuration of a BioGptModel. It is used to instantiate an BioGPT model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the BioGPT microsoft/biogpt architecture.
Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.
Example:
>>> from transformers import BioGptModel, BioGptConfig
>>> # Initializing a BioGPT microsoft/biogpt style configuration
>>> configuration = BioGptConfig()
>>> # Initializing a model from the microsoft/biogpt style configuration
>>> model = BioGptModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
( vocab_file merges_file unk_token = '<unk>' bos_token = '<s>' eos_token = '</s>' sep_token = '</s>' pad_token = '<pad>' **kwargs )
Parameters
str
) —
Path to the vocabulary file. str
) —
Merges file. str
, optional, defaults to "<unk>"
) —
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead. str
, optional, defaults to "<s>"
) —
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the cls_token
.
str
, optional, defaults to "</s>"
) —
The end of sequence token.
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the sep_token
.
str
, optional, defaults to "</s>"
) —
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens. str
, optional, defaults to "<pad>"
) —
The token used for padding, for example when batching sequences of different lengths. Construct an FAIRSEQ Transformer tokenizer. Moses tokenization followed by Byte-Pair Encoding.
This tokenizer inherits from PreTrainedTokenizer which contains most of the main methods. Users should refer to this superclass for more information regarding those methods.
( config: BioGptConfig )
Parameters
The bare BioGPT Model transformer outputting raw hidden-states without any specific head on top. This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( input_ids: Optional = None attention_mask: Optional = None head_mask: Optional = None inputs_embeds: Optional = None past_key_values: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions or tuple(torch.FloatTensor)
Parameters
torch.LongTensor
of shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
torch.FloatTensor
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
torch.FloatTensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) —
Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]
:
torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert input_ids indices into associated vectors than the
model’s internal embedding lookup matrix. tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) —
Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape
(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that
don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of all
decoder_input_ids
of shape (batch_size, sequence_length)
.
torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert input_ids
indices into associated vectors
than the model’s internal embedding lookup matrix. bool
, optional) —
If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see
past_key_values
). bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. Returns
transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions or tuple(torch.FloatTensor)
A transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (BioGptConfig) and inputs.
last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model.
If past_key_values
is used only the last hidden-state of the sequences of shape (batch_size, 1, hidden_size)
is output.
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and optionally if
config.is_encoder_decoder=True
2 additional tensors of shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
config.is_encoder_decoder=True
in the cross-attention blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
and config.add_cross_attention=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
The BioGptModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, BioGptModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/biogpt")
>>> model = BioGptModel.from_pretrained("microsoft/biogpt")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
( config )
Parameters
BioGPT Model with a language modeling
head on top for CLM fine-tuning.
This model is a PyTorch torch.nn.Module sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
( input_ids: Optional = None attention_mask: Optional = None head_mask: Optional = None inputs_embeds: Optional = None past_key_values: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)
Parameters
torch.LongTensor
of shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
torch.FloatTensor
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
torch.FloatTensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) —
Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]
:
torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert input_ids indices into associated vectors than the
model’s internal embedding lookup matrix. tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) —
Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape
(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that
don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of all
decoder_input_ids
of shape (batch_size, sequence_length)
.
torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert input_ids
indices into associated vectors
than the model’s internal embedding lookup matrix. bool
, optional) —
If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see
past_key_values
). bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. torch.LongTensor
of shape (batch_size, sequence_length)
, optional) —
Labels for language modeling. Note that the labels are shifted inside the model, i.e. you can set
labels = input_ids
Indices are selected in [-100, 0, ..., config.vocab_size]
All labels set to -100
are ignored (masked), the loss is only computed for labels in [0, ..., config.vocab_size]
Returns
transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)
A transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (BioGptConfig) and inputs.
loss (torch.FloatTensor
of shape (1,)
, optional, returned when labels
is provided) — Language modeling loss (for next-token prediction).
logits (torch.FloatTensor
of shape (batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Cross attentions weights after the attention softmax, used to compute the weighted average in the cross-attention heads.
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of torch.FloatTensor
tuples of length config.n_layers
, with each tuple containing the cached key,
value states of the self-attention and the cross-attention layers if model is used in encoder-decoder
setting. Only relevant if config.is_decoder = True
.
Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
past_key_values
input) to speed up sequential decoding.
The BioGptForCausalLM forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> import torch
>>> from transformers import AutoTokenizer, BioGptForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/biogpt")
>>> model = BioGptForCausalLM.from_pretrained("microsoft/biogpt")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs, labels=inputs["input_ids"])
>>> loss = outputs.loss
>>> logits = outputs.logits
( config )
Parameters
BioGPT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.
This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( input_ids: Optional = None token_type_ids: Optional = None attention_mask: Optional = None head_mask: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.TokenClassifierOutput or tuple(torch.FloatTensor)
Parameters
torch.LongTensor
of shape ({0})
) —
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
torch.FloatTensor
of shape ({0})
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
torch.FloatTensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) —
Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]
:
torch.FloatTensor
of shape ({0}, hidden_size)
, optional) —
Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert input_ids indices into associated vectors than the
model’s internal embedding lookup matrix. tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) —
Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape
(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that
don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of all
decoder_input_ids
of shape (batch_size, sequence_length)
.
torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert input_ids
indices into associated vectors
than the model’s internal embedding lookup matrix. bool
, optional) —
If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see
past_key_values
). bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. torch.LongTensor
of shape (batch_size,)
, optional) —
Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]
. If config.num_labels == 1
a regression loss is computed (Mean-Square loss), If
config.num_labels > 1
a classification loss is computed (Cross-Entropy). Returns
transformers.modeling_outputs.TokenClassifierOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.TokenClassifierOutput or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (BioGptConfig) and inputs.
loss (torch.FloatTensor
of shape (1,)
, optional, returned when labels
is provided) — Classification loss.
logits (torch.FloatTensor
of shape (batch_size, sequence_length, config.num_labels)
) — Classification scores (before SoftMax).
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The BioGptForTokenClassification forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, BioGptForTokenClassification
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/biogpt")
>>> model = BioGptForTokenClassification.from_pretrained("microsoft/biogpt")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_token_class_ids = logits.argmax(-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
( config: BioGptConfig )
Parameters
The BioGpt Model transformer with a sequence classification head on top (linear layer).
BioGptForSequenceClassification uses the last token in order to do the classification, as other causal models (e.g. GPT-2) do.
Since it does classification on the last token, it is required to know the position of the last token. If a
pad_token_id
is defined in the configuration, it finds the last token that is not a padding token in each row. If
no pad_token_id
is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when inputs_embeds
are passed instead of input_ids
, it does the same (take the last value in
each row of the batch).
This model is a PyTorch torch.nn.Module sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( input_ids: Optional = None attention_mask: Optional = None head_mask: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.SequenceClassifierOutputWithPast
or tuple(torch.FloatTensor)
Parameters
torch.LongTensor
of shape ({0})
) —
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
torch.FloatTensor
of shape ({0})
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
torch.FloatTensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) —
Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]
:
torch.FloatTensor
of shape ({0}, hidden_size)
, optional) —
Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert input_ids indices into associated vectors than the
model’s internal embedding lookup matrix. tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) —
Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape
(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that
don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of all
decoder_input_ids
of shape (batch_size, sequence_length)
.
torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert input_ids
indices into associated vectors
than the model’s internal embedding lookup matrix. bool
, optional) —
If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see
past_key_values
). bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. torch.LongTensor
of shape (batch_size,)
, optional) —
Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]
. If config.num_labels == 1
a regression loss is computed (Mean-Square loss), If
config.num_labels > 1
a classification loss is computed (Cross-Entropy). Returns
transformers.modeling_outputs.SequenceClassifierOutputWithPast
or tuple(torch.FloatTensor)
A transformers.modeling_outputs.SequenceClassifierOutputWithPast
or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (BioGptConfig) and inputs.
loss (torch.FloatTensor
of shape (1,)
, optional, returned when labels
is provided) — Classification (or regression if config.num_labels==1) loss.
logits (torch.FloatTensor
of shape (batch_size, config.num_labels)
) — Classification (or regression if config.num_labels==1) scores (before SoftMax).
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
past_key_values
input) to speed up sequential decoding.
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The BioGptForSequenceClassification forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example of single-label classification:
>>> import torch
>>> from transformers import AutoTokenizer, BioGptForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/biogpt")
>>> model = BioGptForSequenceClassification.from_pretrained("microsoft/biogpt")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = BioGptForSequenceClassification.from_pretrained("microsoft/biogpt", num_labels=num_labels)
>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
Example of multi-label classification:
>>> import torch
>>> from transformers import AutoTokenizer, BioGptForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("microsoft/biogpt")
>>> model = BioGptForSequenceClassification.from_pretrained("microsoft/biogpt", problem_type="multi_label_classification")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = BioGptForSequenceClassification.from_pretrained(
... "microsoft/biogpt", num_labels=num_labels, problem_type="multi_label_classification"
... )
>>> labels = torch.sum(
... torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss