The BigBird model was proposed in Big Bird: Transformers for Longer Sequences by Zaheer, Manzil and Guruganesh, Guru and Dubey, Kumar Avinava and Ainslie, Joshua and Alberti, Chris and Ontanon, Santiago and Pham, Philip and Ravula, Anirudh and Wang, Qifan and Yang, Li and others. BigBird, is a sparse-attention based transformer which extends Transformer based models, such as BERT to much longer sequences. In addition to sparse attention, BigBird also applies global attention as well as random attention to the input sequence. Theoretically, it has been shown that applying sparse, global, and random attention approximates full attention, while being computationally much more efficient for longer sequences. As a consequence of the capability to handle longer context, BigBird has shown improved performance on various long document NLP tasks, such as question answering and summarization, compared to BERT or RoBERTa.
The abstract from the paper is the following:
Transformers-based models, such as BERT, have been one of the most successful deep learning models for NLP. Unfortunately, one of their core limitations is the quadratic dependency (mainly in terms of memory) on the sequence length due to their full attention mechanism. To remedy this, we propose, BigBird, a sparse attention mechanism that reduces this quadratic dependency to linear. We show that BigBird is a universal approximator of sequence functions and is Turing complete, thereby preserving these properties of the quadratic, full attention model. Along the way, our theoretical analysis reveals some of the benefits of having O(1) global tokens (such as CLS), that attend to the entire sequence as part of the sparse attention mechanism. The proposed sparse attention can handle sequences of length up to 8x of what was previously possible using similar hardware. As a consequence of the capability to handle longer context, BigBird drastically improves performance on various NLP tasks such as question answering and summarization. We also propose novel applications to genomics data.
The original code can be found here.
( vocab_size = 96103 max_position_embeddings = 4096 encoder_layers = 16 encoder_ffn_dim = 4096 encoder_attention_heads = 16 decoder_layers = 16 decoder_ffn_dim = 4096 decoder_attention_heads = 16 encoder_layerdrop = 0.0 decoder_layerdrop = 0.0 use_cache = True is_encoder_decoder = True activation_function = 'gelu_new' d_model = 1024 dropout = 0.1 attention_dropout = 0.0 activation_dropout = 0.0 init_std = 0.02 decoder_start_token_id = 2 classifier_dropout = 0.0 scale_embedding = True pad_token_id = 0 bos_token_id = 2 eos_token_id = 1 attention_type = 'block_sparse' block_size = 64 num_random_blocks = 3 use_bias = False **kwargs )
Parameters
int
, optional, defaults to 96103) —
Vocabulary size of the BigBirdPegasus model. Defines the number of different tokens that can be represented
by the inputs_ids
passed when calling BigBirdPegasusModel. int
, optional, defaults to 1024) —
Dimension of the layers and the pooler layer. int
, optional, defaults to 16) —
Number of encoder layers. int
, optional, defaults to 16) —
Number of decoder layers. int
, optional, defaults to 16) —
Number of attention heads for each attention layer in the Transformer encoder. int
, optional, defaults to 16) —
Number of attention heads for each attention layer in the Transformer decoder. int
, optional, defaults to 4096) —
Dimension of the “intermediate” (often named feed-forward) layer in decoder. int
, optional, defaults to 4096) —
Dimension of the “intermediate” (often named feed-forward) layer in decoder. str
or function
, optional, defaults to "gelu_new"
) —
The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu"
,
"relu"
, "silu"
and "gelu_new"
are supported. float
, optional, defaults to 0.1) —
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. float
, optional, defaults to 0.0) —
The dropout ratio for the attention probabilities. float
, optional, defaults to 0.0) —
The dropout ratio for activations inside the fully connected layer. float
, optional, defaults to 0.0) —
The dropout ratio for classifier. int
, optional, defaults to 4096) —
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 1024 or 2048 or 4096). float
, optional, defaults to 0.02) —
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. float
, optional, defaults to 0.0) —
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details. float
, optional, defaults to 0.0) —
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details. bool
, optional, defaults to True
) —
Whether or not the model should return the last key/values attentions (not used by all models). str
, optional, defaults to "block_sparse"
) —
Whether to use block sparse attention (with n complexity) as introduced in paper or original attention
layer (with n^2 complexity) in encoder. Possible values are "original_full"
and "block_sparse"
. bool
, optional, defaults to False
) —
Whether to use bias in query, key, value. int
, optional, defaults to 64) —
Size of each block. Useful only when attention_type == "block_sparse"
. int
, optional, defaults to 3) —
Each query is going to attend these many number of random blocks. Useful only when attention_type == "block_sparse"
. bool
, optional, defaults to True
) —
Whether to rescale embeddings with (hidden_size ** 0.5). This is the configuration class to store the configuration of a BigBirdPegasusModel. It is used to instantiate an BigBirdPegasus model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the BigBirdPegasus google/bigbird-pegasus-large-arxiv architecture.
Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.
Example:
>>> from transformers import BigBirdPegasusConfig, BigBirdPegasusModel
>>> # Initializing a BigBirdPegasus bigbird-pegasus-base style configuration
>>> configuration = BigBirdPegasusConfig()
>>> # Initializing a model (with random weights) from the bigbird-pegasus-base style configuration
>>> model = BigBirdPegasusModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
( config: BigBirdPegasusConfig )
Parameters
The bare BigBirdPegasus Model outputting raw hidden-states without any specific head on top. This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( input_ids: LongTensor = None attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None head_mask: Optional = None decoder_head_mask: Optional = None cross_attn_head_mask: Optional = None encoder_outputs: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None decoder_inputs_embeds: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.Seq2SeqModelOutput or tuple(torch.FloatTensor)
Parameters
torch.LongTensor
of shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
torch.Tensor
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
torch.LongTensor
of shape (batch_size, target_sequence_length)
, optional) —
Provide for translation and summarization training. By default, the model will create this tensor by
shifting the input_ids
to the right, following the paper. torch.LongTensor
of shape (batch_size, target_sequence_length)
, optional) —
Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also
be used by default.
If you want to change padding behavior, you should read
modeling_bigbird_pegasus._prepare_decoder_attention_mask
and modify to your needs. See diagram 1 in
the paper for more information on the default strategy.
torch.Tensor
of shape (num_layers, num_heads)
, optional) —
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in [0, 1]
:
tuple(tuple(torch.FloatTensor)
, optional) —
Tuple consists of (last_hidden_state
, optional: hidden_states
, optional: attentions
)
last_hidden_state
of shape (batch_size, sequence_length, hidden_size)
, optional) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) —
Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape
(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that
don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of all
decoder_input_ids
of shape (batch_size, sequence_length)
.
torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert input_ids
indices into associated vectors
than the model’s internal embedding lookup matrix. torch.FloatTensor
of shape (batch_size, target_sequence_length, hidden_size)
, optional) —
Optionally, instead of passing decoder_input_ids
you can choose to directly pass an embedded
representation. If past_key_values
is used, optionally only the last decoder_inputs_embeds
have to be
input (see past_key_values
). This is useful if you want more control over how to convert
decoder_input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
If decoder_input_ids
and decoder_inputs_embeds
are both unset, decoder_inputs_embeds
takes the value
of inputs_embeds
.
bool
, optional) —
If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see
past_key_values
). bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. Returns
transformers.modeling_outputs.Seq2SeqModelOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.Seq2SeqModelOutput or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (BigBirdPegasusConfig) and inputs.
last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the decoder of the model.
If past_key_values
is used only the last hidden-state of the sequences of shape (batch_size, 1, hidden_size)
is output.
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape
(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the optional initial embedding outputs.
decoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the optional initial embedding outputs.
encoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
The BigBirdPegasusModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, BigBirdPegasusModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-pegasus-large-arxiv")
>>> model = BigBirdPegasusModel.from_pretrained("google/bigbird-pegasus-large-arxiv")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
( config: BigBirdPegasusConfig )
Parameters
The BigBirdPegasus Model with a language modeling head. Can be used for summarization. This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( input_ids: LongTensor = None attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None head_mask: Optional = None decoder_head_mask: Optional = None cross_attn_head_mask: Optional = None encoder_outputs: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None decoder_inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.Seq2SeqLMOutput or tuple(torch.FloatTensor)
Parameters
torch.LongTensor
of shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
torch.Tensor
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
torch.LongTensor
of shape (batch_size, target_sequence_length)
, optional) —
Provide for translation and summarization training. By default, the model will create this tensor by
shifting the input_ids
to the right, following the paper. torch.LongTensor
of shape (batch_size, target_sequence_length)
, optional) —
Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also
be used by default.
If you want to change padding behavior, you should read
modeling_bigbird_pegasus._prepare_decoder_attention_mask
and modify to your needs. See diagram 1 in
the paper for more information on the default strategy.
torch.Tensor
of shape (num_layers, num_heads)
, optional) —
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in [0, 1]
:
tuple(tuple(torch.FloatTensor)
, optional) —
Tuple consists of (last_hidden_state
, optional: hidden_states
, optional: attentions
)
last_hidden_state
of shape (batch_size, sequence_length, hidden_size)
, optional) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) —
Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape
(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that
don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of all
decoder_input_ids
of shape (batch_size, sequence_length)
.
torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert input_ids
indices into associated vectors
than the model’s internal embedding lookup matrix. torch.FloatTensor
of shape (batch_size, target_sequence_length, hidden_size)
, optional) —
Optionally, instead of passing decoder_input_ids
you can choose to directly pass an embedded
representation. If past_key_values
is used, optionally only the last decoder_inputs_embeds
have to be
input (see past_key_values
). This is useful if you want more control over how to convert
decoder_input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
If decoder_input_ids
and decoder_inputs_embeds
are both unset, decoder_inputs_embeds
takes the value
of inputs_embeds
.
bool
, optional) —
If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see
past_key_values
). bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. torch.LongTensor
of shape (batch_size, sequence_length)
, optional) —
Labels for computing the masked language modeling loss. Indices should either be in [0, ..., config.vocab_size]
or -100 (see input_ids
docstring). Tokens with indices set to -100
are ignored
(masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size]
. Returns
transformers.modeling_outputs.Seq2SeqLMOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.Seq2SeqLMOutput or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (BigBirdPegasusConfig) and inputs.
loss (torch.FloatTensor
of shape (1,)
, optional, returned when labels
is provided) — Language modeling loss.
logits (torch.FloatTensor
of shape (batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape
(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
The BigBirdPegasusForConditionalGeneration forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Summarization example:
>>> from transformers import AutoTokenizer, BigBirdPegasusForConditionalGeneration
>>> model = BigBirdPegasusForConditionalGeneration.from_pretrained("google/bigbird-pegasus-large-arxiv")
>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-pegasus-large-arxiv")
>>> ARTICLE_TO_SUMMARIZE = (
... "The dominant sequence transduction models are based on complex recurrent or convolutional neural "
... "networks in an encoder-decoder configuration. The best performing models also connect the encoder "
... "and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, "
... "based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. "
... "Experiments on two machine translation tasks show these models to be superior in quality "
... "while being more parallelizable and requiring significantly less time to train."
... )
>>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=4096, return_tensors="pt", truncation=True)
>>> # Generate Summary
>>> summary_ids = model.generate(inputs["input_ids"], num_beams=4, max_length=15)
>>> tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
'dominant sequence models are based on recurrent or convolutional neural networks .'
( config: BigBirdPegasusConfig **kwargs )
Parameters
BigBirdPegasus model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks.
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( input_ids: LongTensor = None attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None head_mask: Optional = None decoder_head_mask: Optional = None cross_attn_head_mask: Optional = None encoder_outputs: Optional = None inputs_embeds: Optional = None decoder_inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.Seq2SeqSequenceClassifierOutput or tuple(torch.FloatTensor)
Parameters
torch.LongTensor
of shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
torch.Tensor
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
torch.LongTensor
of shape (batch_size, target_sequence_length)
, optional) —
Provide for translation and summarization training. By default, the model will create this tensor by
shifting the input_ids
to the right, following the paper. torch.LongTensor
of shape (batch_size, target_sequence_length)
, optional) —
Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also
be used by default.
If you want to change padding behavior, you should read
modeling_bigbird_pegasus._prepare_decoder_attention_mask
and modify to your needs. See diagram 1 in
the paper for more information on the default strategy.
torch.Tensor
of shape (num_layers, num_heads)
, optional) —
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in [0, 1]
:
tuple(tuple(torch.FloatTensor)
, optional) —
Tuple consists of (last_hidden_state
, optional: hidden_states
, optional: attentions
)
last_hidden_state
of shape (batch_size, sequence_length, hidden_size)
, optional) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) —
Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape
(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that
don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of all
decoder_input_ids
of shape (batch_size, sequence_length)
.
torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert input_ids
indices into associated vectors
than the model’s internal embedding lookup matrix. torch.FloatTensor
of shape (batch_size, target_sequence_length, hidden_size)
, optional) —
Optionally, instead of passing decoder_input_ids
you can choose to directly pass an embedded
representation. If past_key_values
is used, optionally only the last decoder_inputs_embeds
have to be
input (see past_key_values
). This is useful if you want more control over how to convert
decoder_input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
If decoder_input_ids
and decoder_inputs_embeds
are both unset, decoder_inputs_embeds
takes the value
of inputs_embeds
.
bool
, optional) —
If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see
past_key_values
). bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. torch.LongTensor
of shape (batch_size,)
, optional) —
Labels for computing the sequence classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]
. If config.num_labels > 1
a classification loss is computed (Cross-Entropy). Returns
transformers.modeling_outputs.Seq2SeqSequenceClassifierOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.Seq2SeqSequenceClassifierOutput or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (BigBirdPegasusConfig) and inputs.
loss (torch.FloatTensor
of shape (1,)
, optional, returned when label
is provided) — Classification (or regression if config.num_labels==1) loss.
logits (torch.FloatTensor
of shape (batch_size, config.num_labels)
) — Classification (or regression if config.num_labels==1) scores (before SoftMax).
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape
(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
The BigBirdPegasusForSequenceClassification forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example of single-label classification:
>>> import torch
>>> from transformers import AutoTokenizer, BigBirdPegasusForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-pegasus-large-arxiv")
>>> model = BigBirdPegasusForSequenceClassification.from_pretrained("google/bigbird-pegasus-large-arxiv")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = BigBirdPegasusForSequenceClassification.from_pretrained("google/bigbird-pegasus-large-arxiv", num_labels=num_labels)
>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
Example of multi-label classification:
>>> import torch
>>> from transformers import AutoTokenizer, BigBirdPegasusForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-pegasus-large-arxiv")
>>> model = BigBirdPegasusForSequenceClassification.from_pretrained("google/bigbird-pegasus-large-arxiv", problem_type="multi_label_classification")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = BigBirdPegasusForSequenceClassification.from_pretrained(
... "google/bigbird-pegasus-large-arxiv", num_labels=num_labels, problem_type="multi_label_classification"
... )
>>> labels = torch.sum(
... torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss
( config )
Parameters
BigBirdPegasus Model with a span classification head on top for extractive question-answering tasks like SQuAD (a
linear layer on top of the hidden-states output to compute span start logits
and span end logits
).
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
( input_ids: Tensor = None attention_mask: Optional = None decoder_input_ids: Optional = None decoder_attention_mask: Optional = None head_mask: Optional = None decoder_head_mask: Optional = None cross_attn_head_mask: Optional = None encoder_outputs: Optional = None start_positions: Optional = None end_positions: Optional = None inputs_embeds: Optional = None decoder_inputs_embeds: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.Seq2SeqQuestionAnsweringModelOutput or tuple(torch.FloatTensor)
Parameters
torch.LongTensor
of shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
torch.Tensor
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
torch.LongTensor
of shape (batch_size, target_sequence_length)
, optional) —
Provide for translation and summarization training. By default, the model will create this tensor by
shifting the input_ids
to the right, following the paper. torch.LongTensor
of shape (batch_size, target_sequence_length)
, optional) —
Default behavior: generate a tensor that ignores pad tokens in decoder_input_ids
. Causal mask will also
be used by default.
If you want to change padding behavior, you should read
modeling_bigbird_pegasus._prepare_decoder_attention_mask
and modify to your needs. See diagram 1 in
the paper for more information on the default strategy.
torch.Tensor
of shape (num_layers, num_heads)
, optional) —
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in [0, 1]
:
tuple(tuple(torch.FloatTensor)
, optional) —
Tuple consists of (last_hidden_state
, optional: hidden_states
, optional: attentions
)
last_hidden_state
of shape (batch_size, sequence_length, hidden_size)
, optional) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) —
Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape
(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those that
don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of all
decoder_input_ids
of shape (batch_size, sequence_length)
.
torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Optionally, instead of passing input_ids
you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert input_ids
indices into associated vectors
than the model’s internal embedding lookup matrix. torch.FloatTensor
of shape (batch_size, target_sequence_length, hidden_size)
, optional) —
Optionally, instead of passing decoder_input_ids
you can choose to directly pass an embedded
representation. If past_key_values
is used, optionally only the last decoder_inputs_embeds
have to be
input (see past_key_values
). This is useful if you want more control over how to convert
decoder_input_ids
indices into associated vectors than the model’s internal embedding lookup matrix.
If decoder_input_ids
and decoder_inputs_embeds
are both unset, decoder_inputs_embeds
takes the value
of inputs_embeds
.
bool
, optional) —
If set to True
, past_key_values
key value states are returned and can be used to speed up decoding (see
past_key_values
). bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under returned
tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for
more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. torch.LongTensor
of shape (batch_size,)
, optional) —
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence
are not taken into account for computing the loss. torch.LongTensor
of shape (batch_size,)
, optional) —
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (sequence_length). Position outside of the sequence
are not taken into account for computing the loss. Returns
transformers.modeling_outputs.Seq2SeqQuestionAnsweringModelOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.Seq2SeqQuestionAnsweringModelOutput or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (BigBirdPegasusConfig) and inputs.
loss (torch.FloatTensor
of shape (1,)
, optional, returned when labels
is provided) — Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
start_logits (torch.FloatTensor
of shape (batch_size, sequence_length)
) — Span-start scores (before SoftMax).
end_logits (torch.FloatTensor
of shape (batch_size, sequence_length)
) — Span-end scores (before SoftMax).
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of shape
(batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of shape
(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
decoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) — Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads.
The BigBirdPegasusForQuestionAnswering forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, BigBirdPegasusForQuestionAnswering
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-pegasus-large-arxiv")
>>> model = BigBirdPegasusForQuestionAnswering.from_pretrained("google/bigbird-pegasus-large-arxiv")
>>> question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
>>> inputs = tokenizer(question, text, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> answer_start_index = outputs.start_logits.argmax()
>>> answer_end_index = outputs.end_logits.argmax()
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
>>> # target is "nice puppet"
>>> target_start_index = torch.tensor([14])
>>> target_end_index = torch.tensor([15])
>>> outputs = model(**inputs, start_positions=target_start_index, end_positions=target_end_index)
>>> loss = outputs.loss
( input_ids: LongTensor = None attention_mask: Optional = None encoder_hidden_states: Optional = None encoder_attention_mask: Optional = None head_mask: Optional = None cross_attn_head_mask: Optional = None past_key_values: Optional = None inputs_embeds: Optional = None labels: Optional = None use_cache: Optional = None output_attentions: Optional = None output_hidden_states: Optional = None return_dict: Optional = None ) → transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)
Parameters
torch.LongTensor
of shape (batch_size, sequence_length)
) —
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
torch.Tensor
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]
:
torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
, optional) —
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
if the model is configured as a decoder. torch.FloatTensor
of shape (batch_size, sequence_length)
, optional) —
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used
in the cross-attention if the model is configured as a decoder. Mask values selected in [0, 1]
: torch.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) —
Mask to nullify selected heads of the attention modules. Mask values selected in [0, 1]
:
torch.Tensor
of shape (decoder_layers, decoder_attention_heads)
, optional) —
Mask to nullify selected heads of the cross-attention modules. Mask values selected in [0, 1]
:
tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) —
Tuple of tuple(torch.FloatTensor)
of length config.n_layers
, with each tuple having 2 tensors of
shape (batch_size, num_heads, sequence_length, embed_size_per_head)
) and 2 additional tensors of
shape (batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
. The two additional
tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see past_key_values
input) to speed up sequential decoding.
If past_key_values
are used, the user can optionally input only the last decoder_input_ids
(those
that don’t have their past key value states given to this model) of shape (batch_size, 1)
instead of
all decoder_input_ids
of shape (batch_size, sequence_length)
.
torch.LongTensor
of shape (batch_size, sequence_length)
, optional) —
Labels for computing the masked language modeling loss. Indices should either be in [0, ..., config.vocab_size]
or -100 (see input_ids
docstring). Tokens with indices set to -100
are ignored
(masked), the loss is only computed for the tokens with labels in [0, ..., config.vocab_size]
. bool
, optional) —
If set to True
, past_key_values
key value states are returned and can be used to speed up decoding
(see past_key_values
).
bool
, optional) —
Whether or not to return the attentions tensors of all attention layers. See attentions
under
returned tensors for more detail. bool
, optional) —
Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors
for more detail. bool
, optional) —
Whether or not to return a ModelOutput instead of a plain tuple. Returns
transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)
A transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (BigBirdPegasusConfig) and inputs.
loss (torch.FloatTensor
of shape (1,)
, optional, returned when labels
is provided) — Language modeling loss (for next-token prediction).
logits (torch.FloatTensor
of shape (batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) — Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
cross_attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) — Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Cross attentions weights after the attention softmax, used to compute the weighted average in the cross-attention heads.
past_key_values (tuple(tuple(torch.FloatTensor))
, optional, returned when use_cache=True
is passed or when config.use_cache=True
) — Tuple of torch.FloatTensor
tuples of length config.n_layers
, with each tuple containing the cached key,
value states of the self-attention and the cross-attention layers if model is used in encoder-decoder
setting. Only relevant if config.is_decoder = True
.
Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
past_key_values
input) to speed up sequential decoding.
Example:
>>> from transformers import AutoTokenizer, BigBirdPegasusForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("google/bigbird-pegasus-large-arxiv")
>>> model = BigBirdPegasusForCausalLM.from_pretrained(
... "google/bigbird-pegasus-large-arxiv", add_cross_attention=False
... )
>>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits