Python support for the Linux perf
profiler¶
- author
Pablo Galindo
The Linux perf profiler
is a very powerful tool that allows you to profile and obtain
information about the performance of your application.
perf
also has a very vibrant ecosystem of tools
that aid with the analysis of the data that it produces.
The main problem with using the perf
profiler with Python applications is that
perf
only allows to get information about native symbols, this is, the names of
the functions and procedures written in C. This means that the names and file names
of the Python functions in your code will not appear in the output of the perf
.
Since Python 3.12, the interpreter can run in a special mode that allows Python
functions to appear in the output of the perf
profiler. When this mode is
enabled, the interpreter will interpose a small piece of code compiled on the
fly before the execution of every Python function and it will teach perf
the
relationship between this piece of code and the associated Python function using
perf map files.
Note
Support for the perf
profiler is only currently available for Linux on
selected architectures. Check the output of the configure build step or
check the output of python -m sysconfig | grep HAVE_PERF_TRAMPOLINE
to see if your system is supported.
For example, consider the following script:
def foo(n):
result = 0
for _ in range(n):
result += 1
return result
def bar(n):
foo(n)
def baz(n):
bar(n)
if __name__ == "__main__":
baz(1000000)
We can run perf
to sample CPU stack traces at 9999 Hertz:
$ perf record -F 9999 -g -o perf.data python my_script.py
Then we can use perf
report to analyze the data:
$ perf report --stdio -n -g
# Children Self Samples Command Shared Object Symbol
# ........ ........ ............ .......... .................. ..........................................
#
91.08% 0.00% 0 python.exe python.exe [.] _start
|
---_start
|
--90.71%--__libc_start_main
Py_BytesMain
|
|--56.88%--pymain_run_python.constprop.0
| |
| |--56.13%--_PyRun_AnyFileObject
| | _PyRun_SimpleFileObject
| | |
| | |--55.02%--run_mod
| | | |
| | | --54.65%--PyEval_EvalCode
| | | _PyEval_EvalFrameDefault
| | | PyObject_Vectorcall
| | | _PyEval_Vector
| | | _PyEval_EvalFrameDefault
| | | PyObject_Vectorcall
| | | _PyEval_Vector
| | | _PyEval_EvalFrameDefault
| | | PyObject_Vectorcall
| | | _PyEval_Vector
| | | |
| | | |--51.67%--_PyEval_EvalFrameDefault
| | | | |
| | | | |--11.52%--_PyLong_Add
| | | | | |
| | | | | |--2.97%--_PyObject_Malloc
...
As you can see here, the Python functions are not shown in the output, only _Py_Eval_EvalFrameDefault
appears
(the function that evaluates the Python bytecode) shows up. Unfortunately that’s not very useful because all Python
functions use the same C function to evaluate bytecode so we cannot know which Python function corresponds to which
bytecode-evaluating function.
Instead, if we run the same experiment with perf
support enabled we get:
$ perf report --stdio -n -g
# Children Self Samples Command Shared Object Symbol
# ........ ........ ............ .......... .................. .....................................................................
#
90.58% 0.36% 1 python.exe python.exe [.] _start
|
---_start
|
--89.86%--__libc_start_main
Py_BytesMain
|
|--55.43%--pymain_run_python.constprop.0
| |
| |--54.71%--_PyRun_AnyFileObject
| | _PyRun_SimpleFileObject
| | |
| | |--53.62%--run_mod
| | | |
| | | --53.26%--PyEval_EvalCode
| | | py::<module>:/src/script.py
| | | _PyEval_EvalFrameDefault
| | | PyObject_Vectorcall
| | | _PyEval_Vector
| | | py::baz:/src/script.py
| | | _PyEval_EvalFrameDefault
| | | PyObject_Vectorcall
| | | _PyEval_Vector
| | | py::bar:/src/script.py
| | | _PyEval_EvalFrameDefault
| | | PyObject_Vectorcall
| | | _PyEval_Vector
| | | py::foo:/src/script.py
| | | |
| | | |--51.81%--_PyEval_EvalFrameDefault
| | | | |
| | | | |--13.77%--_PyLong_Add
| | | | | |
| | | | | |--3.26%--_PyObject_Malloc
How to enable perf
profiling support¶
perf
profiling support can either be enabled from the start using
the environment variable PYTHONPERFSUPPORT
or the
-X perf
option,
or dynamically using sys.activate_stack_trampoline()
and
sys.deactivate_stack_trampoline()
.
The sys
functions take precedence over the -X
option,
the -X
option takes precedence over the environment variable.
Example, using the environment variable:
$ PYTHONPERFSUPPORT=1
$ python script.py
$ perf report -g -i perf.data
Example, using the -X
option:
$ python -X perf script.py
$ perf report -g -i perf.data
Example, using the sys
APIs in file example.py
:
import sys
sys.activate_stack_trampoline("perf")
do_profiled_stuff()
sys.deactivate_stack_trampoline()
non_profiled_stuff()
…then:
$ python ./example.py
$ perf report -g -i perf.data
How to obtain the best results¶
For the best results, Python should be compiled with
CFLAGS="-fno-omit-frame-pointer -mno-omit-leaf-frame-pointer"
as this allows
profilers to unwind using only the frame pointer and not on DWARF debug
information. This is because as the code that is interposed to allow perf
support is dynamically generated it doesn’t have any DWARF debugging information
available.
You can check if your system has been compiled with this flag by running:
$ python -m sysconfig | grep 'no-omit-frame-pointer'
If you don’t see any output it means that your interpreter has not been compiled with
frame pointers and therefore it may not be able to show Python functions in the output
of perf
.